

EpiData Help file

Version 3.1

Data entry and data documentation

http://www.epidata.dk

 Jens M. Lauritsen & Michael Bruus
The EpiData Association, Odense Denmark

Version of : November 26th 2004

.

2

About EpiData v3.1

Program design by:
Jens M. Lauritsen & Michael Bruus.
EpiData is released as freeware by the non-profit organisation “The EpiData Association” Odense, Denmark
(In danish: EpiData foreningen). Previous releases by County of Funen, Denmark and Brixton Health, UK.
Programming by: Michael Bruus, Denmark.

Translation:
EpiData has been translated to several languages. See http://www.epidata.dk for a list of names, web servers
and institutions of those who made the translations.

Suggested citation:
Lauritsen JM & Bruus M. EpiData (version 3.1). A comprehensive tool for validated entry and documentation
of data. The EpiData Association, Odense Denmark, 2004.

Previous versions: We wish to emphasise that Mark Myatt contributed with great inspiration, specifications
and ideas to version 1 and 2 of EpiData – initiation of the EpiData effort would not have been possible without
Marks contribution. See also history document on www.epidata.dk First version of EpiData released as
Lauritsen JM, Bruus M., Myatt MA, EpiData, version 1.0-1.5. A tool for validated entry and documentation of
data. County of Funen Denmark and Brixton Health UK. 2001.

EpiData is free.
EpiData is distributed as freeware. You are welcome to give a copy to a colleague. All documentation
documents are released with permission to copy, distribute, and / or modify the documents under the terms of the GNU
(http://www.gnu.org/copyleft/fdl.html) Free Documentation License Version 1.1 or any later version published by the
Free Software Foundation with no invariant sections, no back-cover texts. Front pages must be kept as is when
documents are translated with the addition of name and organisation of translator.

If anyone finds that EpiData is sold or restricted in use by some regulations please notify us immediately at
info@epidata.dk It is strictly prohibited to charge anything for the use or delivery of EpiData. Exceptions for this can be
supplementary materials in printing made at the cost of printing or for postage of disks or CD’s. But the program as such
cannot be sold. This includes translations. No-one can charge any fee for delivery of a translated version. If you are in
doubt do not hesitate to contact us. Give reference for the download site or postal adress of those asking for payments
for delivery of EpiData. Procedures in EpiData cannot be patented.

Visit www.epidata.dk for information on updates, known bugs and further documentation.

Some useful internet pages on Biostatistics, Epidemiology, Public Health, Epi Info etc.:
Data types and analysis: http://www.sjsu.edu/faculty/gerstman/Epi Info
Tools for tabulated data: http://www.openepi.com
Epi Info home page: http://www.cdc.gov/epo/epi/Epi Info.htm

Statistical routines: http://www.oac.ucla.edu/training/stata/
Epidemiology Sources: http://www.epibiostat.ucsf.edu/epidem/epidem.html
Epidemiology lectures: http://www.pitt.edu/~super1/
EpiDemiology – further: http://www.medepi.net/epitools/ Including analysis in R

S Bennett, Mark Myatt, D Jolley and A Radalowicz. Data Management for Surveys and Trials - A Practical
Primer using EpiData. Available from: http://www.epidata.dk/documentation.php

Freeware for calculations and diagrams: See http://www.epidata.dk/documentation.php
Disclaimer The EpiData software program was developed and tested to ensure fail-safe entering and documentation of

data. We made every possible effort in producing a fail-safe program, but cannot in any circumstance be held
responsible for errors, loss of data, work time or other losses incurred by or in relation to the program.

.

3

About EpiData v3.1 .. 2

EpiData is free. ... 2
New features .. 7

Introduction .. 8
Overview – short tour of EpiData. .. 9

1. Define Data... 9
2. Make datafile. ... 9
3. Add/Revise Checks - at Entry of Data .. 9
4. Enter Data .. 9
5. Document Data... 10
6. Export for analysis and securing data. ... 11

How to analyse data after entry.. 11
History of EpiData:.. 12
The EpiData Association .. 12
Thanks for the support and testing... 12
Contributions and funding... 13

Credit card payments. ... 13
Bank transfer. .. 13
Financial review... 13

Support ... 14
EpiData mail news.. 14

Features in EpiData ... 15
EpiData future Development plan: .. 15

Compatibility with Epi Info .. 16
Editor .. 17

Auto indention... 17
Aligning entry fields... 17
The Field Pick List .. 17
Code Writer .. 18
Preview Data Form... 18

Field names.. 19
First word as field name ... 20
Automatic field names .. 20
Variable labels .. 21

Create data file... 22
Revise Data File ... 23
Rename fields .. 24
Check file ... 24

Add / Revise Checks .. 25
Range / Legal ... 26
Ignoremissing ... 26
Jumps ... 27
Must Enter .. 27
Repeat .. 27
Value labels .. 28
Edit all checks for current field ... 29
Copying checks .. 30
Clear Checks .. 30
Check file structure... 30
Example of a check file .. 31
User defined check functions ... 33

List of check commands .. 33
AFTER ENTRY ... 33
AFTER FILE.. 33
AFTER RECORD.. 34
AUTOJUMP... 34
AUTOSAVE... 34

.

4

AUTOSEARCH ... 35
BACKUP.. 35
BEEP... 36
BEFORE ENTRY .. 36
BEFORE FILE ... 36
BEFORE RECORD... 37
CLEAR .. 37
CLEAR COMMENT LEGAL .. 37
COLOR.. 37
COMMENTS (*).. 37
COMMENT LEGAL ... 38
CONFIRM.. 40
CONFIRMFIELD ... 40
COPYTOCLIPBOARD .. 40
DEFINE ... 40
EXECUTE ... 41
EXIT .. 42
GOTO.. 42
HELP ... 42
HIDE, UNHIDE.. 43
INCLUDE... 43
IF..THEN ... 44
JUMPS .. 44
KEY ... 45
LABEL ... 46
LABELBLOCK ... 46
LET.. 47
MISSINGVALUE ... 47
MUSTENTER.. 48
NOENTER... 48
QUIT.. 48
RANGE.. 48
RELATE .. 49
REPEAT .. 49
SHOWLASTRECORD .. 49
TOPOFSCREEN... 49
TYPE ... 50
TYPE COMMENT ... 50
TYPE STATUSBAR .. 51
UNHIDE... 51
WRITENOTE .. 52

Operators and functions ... 53
Operators .. 53

Arithmetic operators .. 53
Logical operators... 53
Relational operators .. 53

Arithmetic functions .. 54
ABS(X): FLOAT ... 54
ARCTAN(X: FLOAT): FLOAT.. 54
COS(X: FLOAT): FLOAT... 54
EXP(X: FLOAT): FLOAT ... 54
FLOAT(X): FLOAT... 54
FRAC(X: FLOAT): FLOAT... 54
INT(X: FLOAT): FLOAT... 54
INTEGER(X): INTEGER.. 54
LN(X: FLOAT): FLOAT.. 54
LOG10(X: FLOAT): FLOAT... 54
PI: FLOAT.. 54

.

5

POWER(BASE, EXPONENT: FLOAT): FLOAT.. 54
ROUND(X: FLOAT): INTEGER... 54
SIN(X: FLOAT): FLOAT... 54
SQR(X: FLOAT): FLOAT... 55
SQRT(X: FLOAT): FLOAT .. 55
STRING(X): STRING... 55
TRUNC(X: FLOAT):INTEGER .. 55

String functions ... 56
UPPER(S: STRING): STRING .. 56
LOWER(S: STRING): STRING ... 56
COPY(S: STRING; INDEX, COUNT: INTEGER): STRING .. 56
POS(SUBSTR: STRING; S: STRING): INTEGER .. 56
LENGTH(S: STRING): INTEGER.. 56
STRING(X): STRING... 56
SOUNDEX(S: STRING): STRING... 56

Date and time functions .. 57
DATE(D:INTEGER,M:INTEGER,Y:INTEGER): DATE.. 57
DAY(D: DATE): INTEGER... 57
DAYOFWEEK(D: DATE):INTEGER.. 57
MONTH(D: DATE): INTEGER... 57
NOW: DATE .. 57
NUM2TIME(D: DATE): FLOAT.. 57
TIME2NUM(F: FLOAT): DATE.. 57
TODAY: DATE... 57
WEEKNUM(D: DATE):INTEGER .. 57
YEAR(D: DATE): INTEGER .. 57

About dates ... 57
How to calculate age on a given specific date ? ... 59
About time ... 59

Other functions.. 60
ISBLANK(FIELD NAME): BOOLEAN .. 60
RECORDCOUNT: INTEGER .. 60
RECORDNUMBER: INTEGER ... 60

Enter Data .. 61
Navigation between fields... 61
Navigation between records... 61
Navigation between related files... 62
Finding records... 62
Finding fields and relatefields ... 62
Filter.. 63

Append / Merge Data files.. 64
Append ... 64
Merge Data files ... 64

Document data file ... 66
Data entry notes ... 66
Data file label .. 66
List data .. 67
Codebook – basic tabulation .. 67
Logical Consistency Check .. 68
Double entry and validation .. 69

Validate duplicate data files... 69
Double entry .. 69

Count records by field... 70
Export data... 72

Backup of data.. 72
Export to text file... 72
Export to dBase III format... 73
Export to Excel ... 73

.

6

Export to SPSS... 74
Export to SAS ... 74
Export to Stata.. 74

Select lettecase for fieldnames... 75
Export to new EpiData data file .. 75

Import data ... 76
Import text files ... 76
Import dBase files... 76
Import Stata files... 77

Other tools and functions ... 78
Make QES file from data file... 78
Recode data file.. 78
Converting a two digit year to a four digit year.. 78
Pack data file .. 79
Compress data file.. 79
Print data entry form ... 79

Options... 80
Editor options .. 80
Show data form options... 80
Create data file options ... 80
Documentation options.. 80
Advanced options.. 80
Sounds .. 81
File associations.. 81

The .INI file ... 81
Toolbars.. 81
Short-cut keys / mouse... 82
Program parameters .. 84
Internationalisation.. 85

Field types in EpiData .. 85
ID Number .. 86
Numeric fields... 86
Text fields and encrypted fields .. 86
Upper-case text fields... 86
Boolean fields (yes/no fields).. 87
Date fields... 87
Today’s date fields.. 87
Soundex fields .. 87
Tabulator code.. 89

Appendices .. 90
Contributions and further acknowledgement.. 90
Acknowledgements .. 90
EpiData house example. – extended explanation .. 91
Datafile structure .. 94
EpiData International Versions ... 97
Principles of translation and local adaptation. .. 97
Who can translate EpiData texts. ... 98

New features in v3.1
Double entry of data and feedback if different from first time.
Implementation of user defined extensions to the check file language

New check commands and functions implemented as:
SHOWLASTRECORD
LOG10
BACKUP creating zip-files or encrypted zip-files

See http://www.epidata.dk/revision.htm for an updated list of changes

.

8

Introduction

EpiData is a program for DataEntry and documentation of data.
Use EpiData when you have collected data on paper and you want to do statistical analyses or
tabulation of data. Basic frequency tables and lists of data can be made, but other than that EpiData is
focused on dataentry and documentation of data.
During dataentry calculation of summary scales or restrictions to values can be defined. You can
choose an item from a list and save the corresponding numerical code (1 = No 2= Yes), the text lists
are exported as "value labels" for statistical programs. Dates are easily entered, e.g. 2301 will be
formatted as 23/01/2001 if entered in year 2001 in a "dd/mm/yyyy" field.

EpiData is suitable for simple datasets where you have one source of data (e.g. one questionnaire or
one laboratory registration form) as well as datasets with many or branching dataforms. The principle is
rooted in the simplicity of the dos program Epi Info version 6, which has many users around the world.
EpiData implements the Epi Info version 6 file structure and principles in a windows setting with focus
on documentation.

The idea is that you write simple text lines and the program converts this to a dataentry form. Once the
dataentry form is ready it is easy to define which data can be entered in the different data fields.

EpiData will not interfere with your computer setup.
It is an essential principle of EpiData not to interfere with the setup of your computer. EpiData consists
of one program file and help files. (In technical terms: EpiData comes as a few files and does not
depend on, install or replace any DLL files in your system directory. Options are saved in an ini file). A
standard "setup.exe" file helps you get the program into your computer. But you can copy the exe file
alone to any other place on your computer and it will still work.

Limitations

No limit on number of observations in theory. In practice it should be less than about 2-300.000. (tested
with 250.000). Search with index in 80.000 records < 1 sec on Pentium I 200Mhz). All fields (variables)
must fit within 999 lines of text.

EpiData cannot handle several users working in the same file. It is a single user system. But there is no
problem in placing datafiles on a shared network drive. As long as each operator works with the data at
a time when no other operator uses the data.

The length of explaining texts for numerical or string codes is 80, the length of the codes as such is 30
characters.

.

9

Overview – short tour of EpiData.

How to work with EpiData
The EpiData screen has a “standard” windows layout with one menu line and two toolbars.
The "Work Process toolbar" guides you from "1. Define data" to “6. Export data” for analysis.
1. Define Data
Define data by writing three types of information for each variable:

A.. Name of input field (variable, e.g. v1 or exposure).
B.. Text describing the variable. (e.g. sex or "day of birth")

 C.. An input definition, e.g. ## for two digit numerical.

Other field types are boolean (yes-no) or
Soundex.

Variable names can take two forms:
a. v1sex (8 first characters in sentence)
b. v1 (first word of sentence).
2. Make datafile.
After writing the defintion you can preview your
dataform or create a datafile.

3. Add/Revise Checks - at Entry of Data
A strong part of EpiData is the possibility to specify rules and calculations during dataentry.
• Restrict dataentry to certain values and give text descriptions to the numerical codes entered.
• Specify sequence of dataentry E.g. fill out certain questions for males only, (jumps)
• Apply calculations during dataentry. E.g. age at visit based on date of visit and date of birth.

Summation of scales and index.
• Help messages and

extended definitions, e.g. if
.. then ...endif.
(For an example get
first.chk from
Http:///www.epidata.dk -
examples page).

4. Enter Data
Open the file and enter, add or
search data. Colors for fields
and background can be
configured. Here white
background and yellow field.
The blue explanatory text to
the right of the input fields is
added by EpiData after entry of
data based on labels in check
file. Body mass index and age
are calculated automatically.

Files saved:

A. Dataform definition file.
E.g. first.qes

B. Actual datafile containing the data. E.g. first.rec.
C. A file with the defined checks. E.g. first.chk

My first DataEntry Form
id (automatic id number) <idnum >
V1 sex #
V2 Height (meter) #.##
v3 Weight (kilo) ###.#
bmi Body Mass Index ##.##
v4 Date of birth <dd/mm/yyyy>
age Age today ###
s1 Country of Residence _____________
s2 City (Current address) <a >
t1 Todays Date <Today-dmy>

.

10

D. Supplementary files, e.g. first.not with notes taken during dataentry or first.log with
documentation.

5. Document Data
After creating the datafile you can document file structure. An example (part of first.rec) is:

DATAFILE: C:\data\first.rec
Filelabel: My first test datafile is an example

Filesize: 612 bytes
Last revision: 28. Jan 2001 12:14
Number of fields: 7
Number of records: 0
Checks applied: Yes (Last revision 28. Jan 2001 12:02)

Fields in datafile:

No. Name Variable label Fieldtype Width Checks Value labels

1 id ID-number 6

2 v1 sex Integer 1 sex
1: Male
2: Female
9: Unknown

3 v2 Height (meter) Fixed number 4:2 Legal: 0.0-2.30,9

6 v4 Date of birth Date (dmy) 10

(other fields omitted)

And after dataentry lists values for some or all records:

Observation 1

id 1 v1 Male v2 1.92
v4 12/12/1945 s1 denmark s2 Copenhagen
t1 28/10/2000

A "codebook" can include raw frequency tables. (example not based on first.rec file)

v2 --- Sex
type: Integer

value labels: sex
range/legal: 1-2,2

missing: 0/25
range: [1,2]

unique values: 2

tabulation: Freq. Pct. Value Label
11 44.0 1 Male
14 56.0 2 Female

v3 -- Temp
type: Floating point

range/legal: 36.00-40.00

missing: 0/25
range: [36.00,37.50]

unique values: 12

mean: 36,84
std. dev: 0,37

.

11

6. Export for analysis and securing data.
The backup routine will copy all files associated with a given datafile to a selected user defined backup
directory/folder. You can also export the data to a number of data formats for analysis.

How to analyse data after entry

EpiData Data Entry is made for entry / checking / management / documentation of data only. It is not a
data analysis system – although basic crude tables can be made (codebook).

Follow the development of an analysis programme on www.epidata.dk. A testversion of Analysis has
been available since October 2004. The programme is nearing release and many basic functions are
available. See Http://www.epidata.dk/testing.php (and later also download pages).

The format of data files produced by EpiData is the same as Epi Info v6.xx, as well as the principles of
the analysis programme. Exceptions to Epi Info file compatibility are described on page 16

You can use Epi Info for Dos to analyse EpiData data files directly or export data to a comma
separated text file, a dBase III file, an Excel file, a Stata data file (www.stata.com) or a command file
which can be read by SPSS or SAS. You can also convert your data using StatTransfer
(www.circlesys.com), DBMS/Copy or Epi Info’s Export module (www.cdc.gov).

Several add-on programs are available for analysis of data in Epi Info format (e.g. survival analysis or
regression analysis). Visit www.brixtonhealth.com for more information.

.

12

History of EpiData:

The initiative to make EpiData was taken by Jens M.Lauritsen. MD. Ph.d. from Denmark. Initially as
part of the “Initiative for Accident Prevention” at Funen County - but why develop a new data entry
programme ?

Epi Info version 6 has all that we need in terms of control of data entry and simplicity. But with
development of windows like programs most users find it hard to cope with the "dos" mode of working
in Epi Info developed during 1990-1995.

Commercially available programs are not focused on documentation, simplicity of use and validation of
double entered data.

On the Epi Info discussion list there were some discussions on strategies around 1997-1998, when the
Epi Info team at CDC in USA decided to make an updated Epi Info version 2000. The updated Epi Info
applies a different strategy in using a completely new way of working and the Access database format
instead of simple text files (ascii).

Since Mark Myatt had similar viewpoints on development strategies he was contacted by Jens
M.Lauritsen towards the end of 1999 and agreed to join the EpiData development team which at that
point also included a skilled pascal programmer Michael Bruus, who is doing the actual programming.

The ambition of EpiData is to create a simple to use independent application, which will not interfere
with or require any special database system drivers (dll based routines) shared with or interfering with
other applications.

The ambition is also to finance development by contributions from institutions, individuals and other
contributors such that the program can be delivered as freeware.

Previous versions: We wish to emphasise that Mark Myatt contributed with great inspiration,
specifications and ideas to version 1 and 2 of EpiData – initiation of the EpiData effort would not have
been possible without Marks contribution. See also history document on www.epidata.dk First version
of EpiData released as Lauritsen JM, Bruus M., Myatt MA, EpiData, version 1.0-1.5. A tool for validated entry
and documentation of data. County of Funen Denmark and Brixton Health UK. 2001.

The EpiData Association

EpiData is released for public use by the EpiData association, which has the purpose of enhancing
dataquality and tools for public health and other field work by dissemination of the Epidata program.

The purpose is also to gain external funding such that all costs for EpiData are paid for. Thereby
allowing for continued dissemination of EpiData as freeware. The EpiData association has no
personnel employed. Persons involved are having jobs elsewhere and are doing the work in freetime
or on paid leave for larger tasks or part of the development.

It is expected that more groups will be formed as part of the continued EpiData development, each
responsible for one part. Contact info@epidata.dk for further information.

Thanks for the support and testing

During the period from end of 1999 to january 2001 it was not known whether EpiData was just my
cracy idea or a sustainable idea. Since then it has gained wide acceptance, not the least shown by the
many Epi Info centers around the world having engaged in translation of menu’s and documents. Also
the many persons having spent hours on testing and commenting are worth mentioning.

Without this support the development of EpiData would not have continued.

JM.Lauritsen
Dated : see front page.

.

13

Contributions and funding

Contributions and donations

EpiData has been made on a very small budget and is supplied as free-ware to the international
community. EpiData is from version 2.0 and above released by the non-profit organisation “The
EpiData Association” Odense, Denmark (In danish: EpiData foreningen). The association receives NO
baseline budget from anyone.

If you like EpiData please consider giving a donation for further development. If you need a proof of
payment please mail us at info@epidata.dk

Further funding is needed to facilitate the development after version 1.5 (e.g. refining of programming,
enhancing speed, maintenance of website, to pay for absence from paid work to do EpiData or other
developmental and promotional efforts for EpiData).

CREDIT CARD PAYMENTS.
A credit card payment should be possible directly on the website www.epidata.dk from mid or end
december 2001. (Awaits official approval).

BANK TRANSFER.
You can also send a contribution to this bank account by direct bank-to-bank transfer (not cheque):

Bank Name: Laan & Spar Bank
Bank Address: Hoejbro Plads 9-11, Postboks 2117,
DK1014 København K, Denmark
Account number: 0400 401 0550861
Account holder: EpiData
SWIFT code: LOSADKK

Due to transaction costs the contribution should be at least $25 / £20 / Euro25 or equivalent. Any less
and it all goes to the banks! From some banks the transaction cost is around $18 / £14 / Euro18 others
as low as $3 / £2 / Euro3. Ask your bank to transfer contributions directly to the bank mentioned above
not through a different danish bank first. Ask for transfer in $/ £/ Euro (€) this should minimise
transaction costs. The transaction costs are the same for small and large contributions. A mechanism
of combined transaction is therefore worked upon.

FINANCIAL REVIEW
The Danish Society of Public Health (Research and general public health association for public health
interested professionals in Denmark) monitors use of the contributions and has full insight into the
spending of donations.

.

14

Support

The current document works as the technical manual for EpiData. Use this document for printing of a
manual. See also:

a. Steve Bennett, Mark Myatt, Damien Jolley, and Andrzej Radalowicz. Data Management for

Surveys and Trials - A Practical Primer using EpiData. Available from:
http://www.myatt.demon.co.uk

b. EpiTour guide provided as windows help file and pdf file.

Other manuals and examples exist. See www.epidata.dk for updated lists of materials.

Unfortunately we do not have the resources to provide personal support in general. But we always try
to help people out of a situation. In particular if data are threatened to be lost or malfunctioning.

In general EpiData questions can be sent to the Epi Info discussion list (subscribe from
www.cdc.gov/epo/epi/Epi Info.htm). Remember that the list is for all Epi Info users so include the key
word EpiData in the title of your message.

If you find errors or bugs when using the program or have suggestions for improvements you may
contact us at:

Info@EpiData.dk

A list of known bugs is maintained at www.EpiData.dk as well as at the discussion forum at the same
adress..

Bug reports should include the following information:

Description of problem. Was it consistent? Did it appear with different data files / structures or only with
a particular one? Could you make the error appear on a different PC? Which operating system were
you using? How much free disk space? Which version of EpiData? Which e-mail address to contact
you if we have suggestions.

Basic principles of formation of data-entry forms, entering data, building of check rules etc. follows
what can be read in the Epi Info v6.xx manual (see http://www.cdc.gov/Epi Info/ei6.htm).

EpiData mail news

To receive major news on EpiData development sign on at www.epidata.dk/php/maillist.php or use the
link on the help menu which will take you to the same link if you have a direct internet connection.

Users who signed on will receive information on major updates and changes arising from major bug
reports. We might also ask users to participate in decisions on what to include in upcoming versions or
to test future versions of EpiData.

Your e-mail address will not be used for other purposes nor will it be given to anyone else.

.

15

Features in EpiData

A complete version and development list is maintained at the http://www.epidata.dk site. Version 3.1 of
EpiData includes the following features:

An editor where multiple questionnaire definition (.QES) files may be created or modified including find
/ replace, copy to / from clipboard, and undo functions.
A easy-to-use field alignment function
A test-data form function allowing questionnaires to be previewed without creating a data file
Creation of data files based on .QES files
Automatic naming of variables based on the text before the variable
Basic entry validation
Check rules
Beep /sounds emitted on error
Create new data records and view / modify existing records
Export of data files to comma separated text files, dBase III, Excel, Stata, SPSS and SAS files
Import of data from text files, dBase III/IV and Stata files
Data file compatibility with Epi Info v6.xx
A work process toolbar to help structure the creation of data and check files
Create a questionnaire (.QES) file from data (.REC) file
Backup of data file
Print Data Form
Data file labels, variable labels and value labels
Revise structure of data file with revised .QES file
Case-wise data listing and enhanced data documentation functions
Indexing of data files for fast searching
Double-entry and validation
Facilities to implement hierarchical coding schemes.
Functions to handle different languages in menus, dialogs, etc.
Relational data entry
Merge / append data files
Batch consistency check of data files
Batch recoding of data files
Implementation of user defined extensions to the check file language

EPIDATA FUTURE DEVELOPMENT PLAN:
Depending on the number of bugs reported in EpiData 3.1 a bug fix release might come out in first
quarter of 2005, but other than that we are in a phase of preparing for the next possible extension of
EpiData.

The development could include:

a. Analysis module compatible with EpiData
b. Implementation of user configurable menu and user specified extensions and external programs.
c. Implementation of a module for transaction logging during dataentry. A request by data authorities

in some countries.
d. A version for the Linux platform
e. Listing and reporting of data based on menu files and additions.

But the above will not take place unless further funding is secured. The basic principle is to get funding
and donations for development and release such that EpiData can be given away at no cost.

.

16

Compatibility with Epi Info

EpiData is, in its ideas and principles of operation, based upon the MSDOS program EpiInfo v6.xx
created for the WHO by the CDC. visit www.cdc.gov/epiinfo.htm for more information.

In the development of EpiData it has been a basic principle that data files created in EpiData should be
compatible with Epi Info and vice versa. However, some differences do exist because some field types
are available in EpiData that are not available in Epi Info and vice-versa.

EpiData and Epi Info v6 are sufficiently similar that many EpiInfo v6.xx projects will work in EpiData
with little or no modification. This is particularly true if only basic checks (i.e. ranges, legal values,
repeats, must enter, skip patterns) are used in the EpiInfo v6.xx project.

Differences between EpiData and Epi Info data files

Using Epi Info data files in EpiData
EpiData does not support the following field types:

• Phonenumber fields
• Phone extension number fields
• Colour codes for background and single entry fields (ignored by EpiData)

Using EpiData data files in EpiInfo

EpiInfo does not support the following EpiData field types:
• European style today’s date <Today-dmy>
• Reversed dates <yyyy/mm/dd> and <Today-ymd>
• Soundex fields
• Tabulator (@) codes
• Colour codes for background, entry fields, etc. are not saved by EpiData

For a full list of field types supported by EpiData, see Field types description.

CHECK language

• IF … THEN structures that specify more than one condition (i.e. IF … THEN structures that
use Boolean operators such as AND / OR) must use round brackets to enclose each
conditional expression (e.g. IF (a=2) AND (b>3) THEN ...). EpiData uses a slightly different
syntax in some calculations and expression.

• The EpiData check language has now been extended to include many functions not allowed in
the Epi Info v6 check file language.

• The HELP command uses a slightly different syntax.
• Colour codes and screen coordinates in some commands (e.g. TYPE, HELP) are ignored by

EpiData.
• Date constants must be ten digit European dates in EpiData, e.g. ”10/02/2001”
• Codefield and codes are NOT supported by EpiData. But the same feature can be

implemented by use of COMMENT LEGAL and TYPE COMMMENT, see the bacterialist
example on the EpiData homepage.

• QUIT, COPYTOCLIPBOARD, SHOWLASTRECORD and user-defined check-commands are
not supported by Epi Info.

Screen co-ordinates in some commands (e.g. TYPE, HELP) are ignored by EpiData.
EpiData uses a slightly different syntax in some calculations and expression.

.

17

Editor

The primary purpose of the EpiData editor is to create questionnaires (.QES files). But also to handle
output from documentation procedures. The user-interface should be familiar as it uses standard
Windows functions.

Some functions, however, are not found in other programs: The Field Pick List, The Code Writer,
Preview Data form Auto Indention, Align Entry fields. these are explained below.

See also how EpiData uses text in .QES files to create field names and variable labels

Auto indention

When the editor in EpiData is used to create indented text the option Auto Indent may be useful. If the
option is selected then new lines will automatically be indented with the same number of blank
characters as the previous line.

This is especially useful when using the editor to create check files

Aligning entry fields

The Align Fields function can be used in the editor when a questionnaire (.QES) file is being written.
Place the cursor in a line in the editor which contains an entry field that has the desired position on the
line. Select Align Fields from the Edit menu.

The result of Align Fields is dependent on the setting of field naming (see File / Options / Create
data file). If First word is field name is the current setting then these lines

v1 A small text ####
v2 Other text <A > v3 ###.#
v3 Text ###

will be changed to

v1 A small text ####
v2 Other text <A > v3 ###.#
v3 Text ###

provided the cursor was placed in the v1-line before Align Entry fields was called.

If field naming is set to Automatic field naming then the result will be:

v1 A small text ####
v2 Other text <A > v3 ###.#

v3 Text ###

The Field Pick List
The field pick list shows, on tabbed pages, the field types available in EpiData. When the pick list is
open, you can select a field type to be inserted at the current position of the cursor in the current editor
window. A field type is selected by choosing the page containing the desired field type, then setting the
properties of the field and clicking on [Insert] (or pressing the [Enter] key).

The pick-list can be opened:

by pressing [Ctrl] + [Q]
by a click on the Field Pick List button found in the editor toolbar
by selecting Field Pick List in the Edit menu
Pressing [Ctrl] + [Q] when pick list is shown changes focus from the editor window to the pick
list window.

Remove the pick-list by:

Clicking the close control on the pick list window
Pressing [Ctrl] + [F4] when the pick list has the focus

.

18

Code Writer

The Code Writer is a helper function making it easier to type the codes used to define the field type
and length in questionnaire (.QES) files. If Code Writer is enabled certain keystrokes will be
interpreted as the beginning of a field definition and Code Writer will complete the code or will ask for
information on the length of the field before writing the code in the questionnaire (.QES) file.

For example, if you type the character #, Code Writer will interpret this as the beginning of a numeric
field and will prompt you for the length of the numeric field. When you have entered the length, the
numeric field will be inserted in the current editor window in the current cursor position.

The following character combinations are recognised by Code Writer:

Numeric field.
 User is prompted for length of field.
 Type 5 to get an integer field of five digits in length (#####).

 Type 5.2 or 5,2 to get a floating point field with five digits before the
 decimal place and two digits after the decimal place (#####.##).

_ Text field.
 User is prompted for length of field.

<E Encrypted field.
User is prompted for length of field.

<A Upper-case text field.
 User is prompted for length of field.

 Latter case of the "A" is not important.

<d European style date <dd/mm/yyyy> will be inserted.
<m American style date <mm/dd/yyyy> will be inserted.
<y Boolean field <Y>will be inserted
<i Automatic ID-number will be inserted.

 User is prompted for length of field.
 Default length (and smallest possible length) is five characters.

<s Soundex field.
 User is prompted for length of field.

Toggle Code Writer on and off: by pressing [Ctrl] + [W]
by a click on the Code Writer button found in the editor toolbar
by selecting Code Writer in the Edit menu

Pressing [Ctrl] + [Q] to open the Field Pick List will turn off the Code Writer. Opening the Code
Writer will turn off the Field Pick List.

Preview Data Form

The Preview Data Form function shows the layout of the questionnaire as it is shown during data entry
but without creating a data (.REC) file.

The fields shown in Preview Data Form behave in the same way and have the same names and
lengths as during data entry, giving a realistic impression of how the questionnaire works. Check
functions are not applied when Preview Data Form is used because no data file is created.

It is not necessary to close a Preview Data Form window before a new Preview Data Form can be
run.

The preview of the data form is not updated automatically when you make changes to the
questionnaire (.QES) file. You should run Preview Data Form again to preview the effect of changes
made in the questionnaire (.QES) file.

.

19

When a questionnaire definition is show in an editor window, Preview Data Form can be run by:

pressing [Ctrl] + [T]
clicking the Preview Data Form button in the editor toolbar
choosing Preview Data Form in the Data File menu
choosing Preview Data Form in the editor pop-up menu
choosing Preview Data Form in the drop-down menu to the Make Data File button on the work
process toolbar.

Field names

Names of the entry fields in a data form are created automatically from the contents of the .QES file.
Two different ways of naming field can be used in EpiData:

1) First word in the question (i.e. the text to the left of the field) is used as the field name

2) Automatic field naming according to the rules used by Epi Info

The method used depends upon the options defined in File / Options / Create Data file. Note also
that the case for variables is defined here. This is particularly useful when exporting to e.g. Stata, in
which fieldnames are case sensitive.

Depending on settings in options, you can get variable
names v1, v2v8 or v1age v2sex ... v8Dur in this
example:

If you select "first word" as shown in the options (file
menu) you get v1, v2.....v8 in the example above.

Further examples given below.

id <idnum>
V1 Age ##
V2 Sex #
V3 Temp ##.##
V3a Temp ##.##
V4 WBC ##
V5 AB #
V6 Cult #
V7 Serv #
V8 Dur ##

.

20

First word as field name

If the option First word in question is field name is selected from File / Options / Create data file,
then the names of the entry fields are created by using the first word in the text to the left of the entry
field. If the length of the first word is more than 10 characters then the first 10 characters of the first
word will be used as the field name.

Examples:

The line

v1 Enter age of patient ###

in a .QES file will give the 3-digit integer field the field name "v1" if the option First word in question is
field name is selected.

The line
Enter age of patient ###

will give the entry field the name "Enter". In this case it would perhaps be better to use the automatic
field naming option.

If a field name is already in use then the next occurrence of the name will include a number. For
example, the lines

v1 Enter age of patient ###
v1 Height of patient ###

will create two 3-digit integer fields. The name of the first field will be "v1". The name of the second
field will be "v2" despite the fact that the first word in line 2 is "v1". This is because field names must be
unique.

In this last case it would be nice to have the data form reflect the actual field name instead of repeating
the word "v1". This can be done by selecting the option Update question to actual field name.

An easy way of testing the way the field names are generated is to use Preview Data form in the Data
file menu or by pressing [Ctrl] + [T].

The letter case of field names is dependent upon the option chosen in File / Options / Create data
file.

Automatic field names

If Automatic field names is selected in the Create data file options (File / Options / Create data
file), EpiData automatically generates field names based on the field's question (i.e. the text to the left
of the field). The field name is a maximum of 10 characters starting with a letter. Letters used in the
name are A-Z. International letters are skipped (a note for Danish users: the Danish letters æ, ø and å
are automatically changed into ae, oe and aa). The field name is generated from the beginning of the
field’s question.

.

21

The following rules are used when generating the field names:

1. Text enclosed in braces (curly brackets) is used in preference to
normal text. If the question is “{my} first {field}” then the field
name will be MYFIELD. Braces offer a powerful method of
defining meaningful field names.

2. Common words are skipped (i.e. words like “what”, “the”, “of”,
“and” etc.). “What did you do?” generates the field name YOUDO.

3. Fields without a question get the same name as the previous field
plus a number. If the previous field is named MYFIELD then the
next field (if it has no question) is named MYFIELD1. If the
previous field is named V31 then the next field is named V32. If
no previous field exists then the default name FIELD1 is used.

4. If the first character of the generated field name is a number then
the letter N is inserted at the first character. “3 little mice”
generates the field name N3LITTLEMI.

5. Letter case of the field name is based on the settings used in File
/ Options / Show data form.

Examples:

Question Generated field name Applied rule(s)
State your {nation}ality NATION Rule 1
Al{l} you l{i}ke is i{ce}cream LICE Rule 1
What is your name ISYOURNAME Rule 2
3. question: N3QUESTION Rule 4

Variable labels

A variable label is a description of the data that a field contains. In EpiData the variable label is
generated automatically by using the text to the left of the field in the .QES file.

If the option First word in question is field name is set then the variable label will be the text to the
left of the field excluding the first word, which is used as the field name.

Example:

The line

v1 Age of patient ###

will create the field name "v1" and the variable label "Age of patient" if the option First word in
question is field name is set.

If the option Automatic field naming is set then the field name will be "v1ageofp" and the variable
label will be "v1 Age of patient".

.

22

Create data file

Create a data (.REC) file by:

selecting New File from the Data menu in the main screen, or by
clicking the Make Data File button in the work process toolbar, or by
selecting Make Data File in the Data File menu in the editor

It is not necessary to open a questionnaire (.QES) file in the editor before creating a data (.REC) file. If
no questionnaire (.QES) file is open in the editor then a select files dialog will be shown.

Settings in Create data file options specify how the fields of the data file are named, see Field names.

The data (.REC) file will, by default, have the same name as the questionnaire (.QES) file by default,
but with the extension .REC instead of .QES. Using the same name for .QES and .REC files is
recommended but is not required.

An optional short description of the data file can be entered (maximum of 50 characters). The short
description is called the data file label. The data file label will be shown as part of the data file's
documentation and it is saved as part of the data file created when exporting to Stata. You may find
that some Epi Info file format data analysis tools will not read a file with a data file label. You are
advised to experiment with data file labels to check if they cause problems with your Epi Info tools. If in
doubt, do not specify a data file label.

Before a data file is created it may be previewed if the .QES file is open in the editor by selecting
Preview Data Form from the Data File menu or by pressing [Ctrl] + [T].

WARNING: An existing data file will be deleted and the data will be lost if a new data file is created with
the same name. To modify a data file without losing data, e.g. to add a field or change the field type of
a field, please use Revise Data File.

.

23

Revise Data File

A data file containing data can be revised without losing data. Data already entered will be copied to
the new format for fields with the same name. You can add fields, change definition of fields or delete
fields. Use the function Revise File found in the Tools menu from the main screen (close all files first).

Do this to revise a data file:

Open the questionnaire (.QES) file defining the data file to revise. If the questionnaire (.QES) file is not
available then create a new questionnaire (.QES) file using QES File from REC File.
Edit the questionnaire (.QES) file (e.g. add new fields, remove fields, change field types).
Save the questionnaire (.QES) file and close it.

Now two options are available:
� Simply open the REC file for date entry, and EpiData will recognise that an updated QES file

exists and ask if you wish to revise the file.
� Or select Revise File in the Tools menu. Select the revised questionnaire (.QES) file and the

data (.REC) file you wish to revise.

WARNING: If you remove fields or change the names of the fields (e.g. by changing the text to the left
of the fields) you will lose data. Please check the new, revised data file carefully. If something goes
wrong, the original data file can be restored. The original data file is saved with the name
FILENAME.OLD.REC in the same directory as the new data file.

EpiData supports two ways of generating the names of the fields in a .QES file, see Field names.
Which method is used is specified using Options from the File menu. Changing naming systems will
change the field names and may lead to loss of data.

Revise data file will check the naming system used when the original data file was created and if it
differs from the setting in Options a warning will be given suggesting that the same naming system
used for the original data file is used.

The field types of the original data file can be changed by giving the field a new type in the revised
questionnaire (.QES) file.

All field types can be changed to text fields or upper-case text fields.
Numeric fields can be changed to numeric fields with the same number of decimals or more. A

warning will be given if data are about to be lost because of a change to fewer
decimals.

Field type in original data file

Can be changed to

Integer Floating point, text, upper-case text, encrypted field
Floating point Floating point, text, upper-case text, encrypted field
IDNUM Integer, floating point, text, upper-case text,

encrypted field
Text Upper-case text, encrypted field
Upper-case text Text, encrypted field
Soundex Text, upper-case text, encrypted field
All date types Text, upper-case text, encrypted field

.

24

Rename fields

Rename Fields changes the names assigned automatically to the fields in a data. Rename Fields is
found on the Tools menu. Select the data file to rename fields in. A list of the current field names is
shown in the first column of a table along with their field labels in the second column.

To rename a field, place the cursor in the third column in the row of the field to be renamed and type
the new field name. Field names can be up to 10 characters long. They must begin with a letter and
can only contain the letters a-z and numbers 0-9.

Only the fields that are to be renamed need to have text in the third column of the list.

Click Save and close to save the changes to the data. Press Cancel to leave the function without
changing the data file. If Save and close is clicked then a copy of the original data file is saved as
filename.old.rec.

If the data file has a check file attached then the field blocks names are changed according to the
entered changes in field names but references to the fields (e.g. GOTO field name or COMMENT
LEGAL USE field name) are not changed. This has to be done manually.

Check file

The simplest way of using EpiData is:

create a questionnaire (.QES) file to describe the layout of the questionnaire,
create a data (.REC) file from the questionnaire (.QES file), and
enter data in the data (.REC) file.

This will work perfectly well.

Rather than checking the data after all data has been entered, it may be useful to check the validity of
the data during the data entry process. Using a check file makes this possible.

A check file describes ways of checking the validity of the entered data for one, several, or all of the
entry fields. The check file can also contain commands to control the flow of data entry (e.g. automatic
jumps from one entry field to another field based on the data entered). A check file must have the
same name as the data file but with the extension .CHK instead of .REC.

Examples of operations that can take place during the data entry process if programmed in a check
file:

Limiting entry of numbers or dates to a specific range or to a number of specified values
Forcing an entry to be made in a field
Copying the data from the previous record to a new record
Making conditional jumps to other fields based on the data in one field
Calculate values of fields based on the values in other fields
Complex calculations and conditional operations (IF..THEN operations)
Help messages to the person entering data

A check file is usually created after creating a data file. The check file may be created in two ways:

1) By using Add / Revise found on the Checks menu, or by clicking the third button on the work
process toolbar. This method can be used to specify or change checks for the fields, but blocks
outside the field blocks (e.g. BEFORE FILE, etc.) can only be specified or changed using the editor.

2) By using the editor to manually write all check commands. Remember to save the check file with the
same name as the data file, but with the extension .CHK instead of .REC.

It is possible to use both methods, using Add/Revise Checks to add basic checks and the editor to
add more complex checks or file level (rather than field level) checks.

If a check file exists when Enter Data is selected then the commands in the check file will be loaded
automatically at the same time as the selected data file.

.

25

The most basic check commands can easily be programmed using the Checks / Add / Revise
function. This includes range checking, specification of legal values, making a field required, making
conditional jumps between fields, making a field the value of the previous record, and using value
labels.

If you only want to use these commands then continue to Add / Revise Checks.

If you want to use other commands (BEFORE ENTRY, AFTER ENTRY, HIDE, UNHIDE, GOTO,
HELP, IF..THEN) then please read The structure of the check file and continue to An example of a
check file.
For a reference of all check commands see List of check commands.

Related topics:

Add/Revise Checks
The structure of the check file
An example of a check file
List of check commands

Add / Revise Checks

This function adds or revises checks (validation rules) to an existing data file.

When a data file is selected, a data form is built and the check functions window is shown.

The [F6] key toggles the focus between the data form and the check functions window.

If the focus is in the data form then pressing [Ctrl] + [RightArrow] key will change the focus to the check
functions window. If the focus is in the check functions window then pressing [Ctrl] + [LeftArrow] key
will change the focus to the data form.

Select the entry field to add validation rules by:

selecting it in the data form (use a mouse click or [TAB] and [Enter] to reach the field)
using the field name pick list at the top of the check functions window
pressing [Ctrl] + [UpArrow] or [Ctrl] + [DownArrow] key when focus is in the check functions window

See also list of short-cut keys.
The field name pick list shows the names of the fields in the data file in the same order as they appear
on the data form.

If the check functions window has the focus you can use the [Arrow] keys, the [TAB] key or the [Enter]
key to reach one of the five basic checks, which are

Range/legal
Jumps
Must Enter
RepeatValue Labels

If the data form has the focus the following key-combinations will give the focus to one of the validation
rules:

Press [Ctrl] + [L] to change the current field's range and/or legal values
Press [Ctrl] + [J] to change Jumps
Press [Ctrl] + [E] to toggle the current field's Must Enter status
Press [Ctrl] + [R] to toggle the current field's Repeat status
Press [Ctrl] + [A] to change the current field's value labels

Note the special use of [Ctrl] + [C], [Ctrl] + [V] and [Ctrl] + [X] when focus is in the data form. See
Copying Checks.

.

26

Save ([Alt] + [S])
Click the save button to save all checks without exiting the Add / Revise Checks function.

Edit ([Alt] + [D] or [F9])
Click Edit to edit all checks of the field, see Edit all checks for current field.

Exit ([Alt] + [X])
Click Exit to exit the Add / Revise Checks function. If changes has been made the user will be asked
if the new checks are to be saved.

Press [Enter] or use the [Arrow] keys when changes have been made to a check to ensure that the
changes are saved. Pressing [Enter] confirms a change.

Range / Legal

If focus is in a field on the data form then [Ctrl] + [L] will make the cursor jump to the Range/Legal
definition line.

A range is defined by typing the minimum value and the maximum value separated by a hyphen.
Typing 2-5 defines that only the numbers 2,3,4 or 5 can be entered in the current field. If only a
maximum value is wanted then use -INF (minus infinity) as the minimum value. If only a minimum
value is wanted then use INF (infinity) as the maximum value. Typing -INF-5 defines all numbers less
than or equal to 5 as legal entries in the current field. Typing 0-INF defines all positive numbers as
legal values.

Legal values are defined by typing all the accepted values separated by spaces or commas. Typing
4,6,8,10 defines that only the numbers 4,6,8 or 10 can be entered in the current field.

If both a range and legal values are defined then the range must be entered before the legal values.
Typing 2-6, 8 defines the numbers 2,3,4,5,6 and 8 as legal values. The definition 8, 2-6 will result in an
error.

If you want to use a comma instead of a dot as the decimal separator please enclose the definition in
double quotes.

Ignoremissing

The default behaviour of EpiData to let a calculation return a missing value if one of the variables
included in the calculation is a missing value.

Use IgnoreMissing in a BEFORE FILE, BEFORE ENTER or anywhere else in the checkfile to change
this behaviour. If IgnoreMissing is found in the checkfile then calculations including missing values will
return a valid result, because missing numeric values will be treated as the value 0 (zero). Only if all
variables in the calculation is are missing values the result will be a missing value.

Example:

A datafile has four fields: V1, V2, V3 and V4, which all are integer fields. V1 contains the number 2, V2
is missing (empty) and V3 contains the number 5. V4 has these checkcommands:

V4
 BEFORE ENTRY
 V4=V1+V2+V3
 END

The default result of this calculation will be a missing value (V4 remains empty) because V2 is a
missing value. If the checkcommands are:

V4
 BEFORE ENTRY
 IGNOREMISSING
 V4=V1+V2+V3
 END

.

27

then the result assigned to V4 will be 2+0+5=7.

Jumps

Jumps define which entry field receives the focus for particular values entered into the current field. If,
for example, the current field contains a sex (1 = male, 2 = female), then the jumps can define that the
value of 1 gives the focus to the field V23 and the value of 2 gives focus to another field, e.g. V40.

Type [Ctrl] + [J] to move the focus from a field in the data form to the jumps definition line.

Jumps are entered by specifying the value, entering a greater-than-sign (>) and specifying the name
of the field to jump to. For example, 1>V23, 2>V40 defines that an entered value of 1 makes the entry
continue in the field named V23 and an entered value of 2 makes the entry continue in the field named
V40. Note that Jumps are separated by commas.

If spaces or commas are used in a definition, enclose the whole definition in double quotes (e.g.
“2.5>V30”, “3,5>V35”).

Instead of specifying a field name as the target for a Jump, two special targets may also be used: END
and WRITE. END means “jump to the last field in the data form”, WRITE means write the current
record to the disk. For example, the Jumps definition “1>V30”,”2>END”,”3>WRITE” specifies the
following behaviour: If the number 1 is entered then data entry continues in the field named V30; if the
number 2 is entered then data entry continues in the last field in the data form; if the number 3 is
entered then the current record is saved.

A general jump command can be entered as “AUTOJUMP V30”. This means that the next field that
receives the focus will be the field named V30 regardless of the data entered in the field containing this
jump condition. If AUTOJUMP is used this must be the only entry in the jumps edit box. AUTOJUMP
is useful for entering data from forms which do not follow the normal left-to-right, top-to-bottom
completion order (e.g. forms arranged in columns).

To make definition of jumps faster, the following short-cut can be used: When the value of a jump and
the following ">" has been written, click with the mouse on the field that the jump should go to. The
name of the clicked field will be inserted after the ">". The same point-and-click can be used after
writing AUTOJUMP (remember to type a space before attempting to click on the destination field).

Must Enter

This rule defines if data must be entered into the current field.

Pressing [Ctrl] + [E] when a field in the data form has the focus during Add / Revise Checks will toggle
the field’s Must Enter status.

Repeat

If Yes is entered in this rule then the data entered in the previous record will be repeated in the next
new record. Repeated data can be changed during data entry. This function can save a lot of typing if
your forms contain data that changes only rarely in a particular batch of forms (e.g. reporting forms in a
surveillance system).

Pressing [Ctrl] + [R] when a field in the data form has the focus will toggle the field’s Repeat status.

.

28

Value labels

Value labels are a set of values combined with text items that explain the meaning of each value.

For example:

A field is created to enter information on the sex of the informant. It is decided that a value of 1 in the
field means that the informant is male and that a value of 2 means the informant is female. If a value
label is defined then a ‘translation table’ can be shown during data entry if the user presses [F9] (or the
[+] key on the numeric keypad). The value labels in this example would be:

1 Male
2 Female

To define a new label

Click the button to the right of the value label drop-down list marked with ‘+’. This opens a small edit
window with this text:

LABEL Label_field
END

The text Label_field is based on the name of the field. You can change this if you want to.

The text to be entered for the example above is:

LABEL Label_Sex

1 ”Male gender”
2 Female

END

The spaces before the values are optional, but they make the list easier to read. Notice the need for
quotes when spaces are included, e.g. 1 ”Buena Vista Social Club” or 3 ”Mongolian Horse”

Click Accept and Close or press [Alt] + [A] to close the edit window. The name of the new label will
now be shown in the Value Label drop-down list.

To edit an existing label

Make sure that the name of the label to be edited is shown in the Value Label drop-down list. Click the
[+] button. The edit window is now shown with all labels defined for the selected Value Label. Edit the
labels and click Accept and Close to exit or press the [Esc] key (or click Cancel) to abandon the
changes.

Assign an existing label to a field

Click on the down arrow in the Value Label drop-down list and select the relevant label. Several fields
can share the same value label, which only needs to be defined once.

Clear the value label for the field

Click on the down-arrow in the Value Label drop-down list and select [none].

Using predefined labels

With the installation of EpiData a value label library was saved in the EpiData program directory. The
library has the filename EpiData.Lbl. The library is meant to be a help when the same value labels are
used often in different projects.

When the down-arrow in the Value Label drop-down list is clicked, the names of value label sets
contained in the library file are shown in normal font. Bold names signify value label sets that are part
of the check file being edited.

.

29

If a value label set from the library file is being edited, the revised value label set is saved only in the
current check file. The value labels in the library file cannot be edited using an editor.

If a value label set in the current check file has the same name as a value label set in the value label
library file, then the label set in the current check file is used and the value label set in the library file is
ignored.

If a EpiData.lbl file exists in the same directory as the data file selected for Add/Revise Checks then
this library is used instead of the library found in the same directory as the program file (EpiData.exe).

NOTE: No warning is given if the EpiData.lbl file has syntax errors. If errors are found then the labels
in the file are ignored.

What is really happening?

When a value label set is assigned to a field using Add / Revise the label definition is placed in the
LABELBLOCK of the check file and the command COMMENT LEGAL USE [labelname] is placed in
the field's field block in the check file. See List of check commands for an explanation of these
commands.

Edit all checks for current field

The Add / Revise Checks window has a button labelled Edit. Pressing this button (or pressing [Alt] +
[D] or [F9]) will open an edit window where the field block for the current field can be edited directly in
the same way as writing the whole check file with an editor, see Check file structure.

If the current field has no check commands attached when the Edit button is clicked then the edit
window will only show the name of the field (to signify the beginning of the field block) and the word
END (to signify the end of the field block).

If the current field has check commands attached these will be shown in the edit window where they
may be edited and new commands can be added.

Press [Esc] or click Cancel to abandon changes.

Click Accept and close or press [Alt] + [A] to accept the changes.

Refer to Check file structure and List of check commands if you want to edit a field's check
commands directly.

Check file blocks outside the field blocks cannot be edited using Add / Revise Checks, but only by
editing the check (.CHK) file in the editor.

Errors in the check commands
When Accept and close is selected, the check commands are evaluated. If no errors are found, the
edit window closes. If errors are found, the edit window is split into two. The top of the window shows
the check commands and the button of the window shows the errors found and the line number where
the errors where found.

Double-click on the line showing the error to make the cursor jump to the check command that
contains the error.

Select Accept and Close once the errors have been corrected.

Please note that expressions and calculations are not evaluated when Accept and Close is selected.

.

30

Copying checks

The most common checks applied to one field can easily be copied or moved to another field:

Select the field with the checks to be copied. Press [Ctrl] + [C] to copy the field’s checks or press [Ctrl]
+ [X] to cut all checks. Select another field and press [Ctrl] + [V] to paste the checks into the new field.

The copy / cut / paste functions copy basic functions such as RANGE, LEGAL, JUMPS, MUSTENTER,
REPEAT and value labels, plus others which are written outside before/after entry blocks.

Clear Checks

This function delete all checks defined for a particular data file. Deleted checks cannot be undeleted.
Use this function with extreme caution.

Check file structure

Commands in a check file are stored in blocks. EpiData supports two basic blocks: label blocks and
field blocks.

The label block is described in the List of check commands.

All commands related to a specific field are stored in a field block. If a field block begins with the name
of the field and ends with the command END, the latter case of commands is ignored and "end" is
interpreted in the same way as "END".

Some commands are themselves blocks (e.g. LEGAL..END, JUMPS..END) while other commands
only use one line (e.g. RANGE, GOTO). All blocks are ended with the command END.

An example:

VAR1

RANGE 1 5
MUSTENTER
JUMPS

1 VAR4
2 VAR5
3 VAR10

END
BEFORE ENTRY

VAR1 = F1 + 100
END
AFTER ENTRY

IF (VAR1=2) AND (F2=1) THEN
HELP "VAR1 cannot equal 2 if F2 equals 1. Check your entries"
GOTO VAR1

ENDIF
END

END

The first line marks the beginning of a field block (i.e. a set of commands) for the field named VAR1.
The last line has the command END which marks the end of the field block. Line 2 and 3 contains
single line commands. Line 2 specifies that only numbers from 1 to 5 may be entered in this field. Line
3 specifies that data must be entered in this field.

Line 4 marks the beginning of a JUMPS command. JUMPS commands are blocks in themselves and
must be terminated with an END (in line 8). In this example an entry of 1 will make the cursor jump to
the field called VAR4, an entry of the number 2 will make the cursor jump to the field called VAR5, and
an entry of the number 3 will make the cursor jump to the field called VAR10.

In this example, the lines in the field block are indented. And the lines in the JUMPS block are indented
more. This indention is not necessary but it makes it easier to read the check file and to keep track of

.

31

where blocks begin and end. The editor in EpiData has an automatic indention function (in the Edit
menu) that makes it easy to indent the lines when editing check files.

Two important block commands are shown in this example: BEFORE ENTRY..END and AFTER
ENTRY..END. All commands in the BEFORE ENTRY..END block are executed as the field receives
the focus but before the user is allowed to enter anything. This can be used to fill out the field with a
default value that may be changed by the user. All commands in the AFTER ENTRY..END block are
executed when the user moves the cursor to another field. If the field has commands in the field block
without an AFTER or BEFORE ENTRY block, these commands will be handled as if they were part of
an AFTER ENTRY..END block.

It is not necessary to include a field block for all the fields in the data file.

Continue to Example of a check file or to see the List of check commands.

Example of a check file

A set of example files are installed in the directory where EpiData is installed. Look at these for
inspiration or troubleshooting. Other examples are found on the EpiData internet site www.EpiData.dk
One of the example files installed on your computer with EpiData is commented here. The example
consists of three files: SAMPLE.QES, SAMPLE.REC and SAMPLE.CHK which resemble a
questionnaire made in connection to a study of children's growth. The sample files may seem illogical
in certain places, so please remember that it is not a real study but only a fictional example to
demonstrate how commands used in check files.

From the main window in EpiData select Open and then the file SAMPLE.QES and press OK. Select
Open again and change the file type to EpiData check file (*.CHK). Select the file SAMPLE.CHK and
press OK. Now the questionnaire (.QES) file and the check (.CHK) file of the example study are both
open for examination. If you want to see both files at the same time select Tile in the Windows menu.
Note that the status bar shows the current line number.

It is recommended that a fixed-width font (e.g. Courier New) is used in the editor when working with
check files. This makes it easier to use indentation and the makes the file clearer to read.

The first line in the check file begins with a *. This makes it a comment line which is ignored when the
check file is interpreted.

The first block in the check file (beginning in line 3 and ending in line 22) is a LABELBLOCK. In this
block two sets of value labels are defined, one called "nationality" and the other "years". Value labels
are used to show the user the meaning of code numbers (e.g. the number 3 is used to indicate a
British citizen).

Both sets of value labels are themselves blocks. The label nationality begins in line 4 and ends in line
14.

For a thorough explanation of value labels see Comment Legal.

The first field block begins in line 24 and ends in line 26. It concerns the field "V1" which the .QES file
shows is this field used for information on the height of the informant. Only one command is found in
this field block and that is RANGE 130 230. This command limits the legal entries in the field ”V1” to
numbers between (and including) 130 and 230. This ensures that errors cannot be made on entry,
resulting in a record stating that the informant was 3 cm in height for example.

The next field block (lines 28-30) concerns the field B1 where the informant's nationality is entered. As
you can see in the .QES file the field is a one-digit integer field. Value labels are used to remind the
user the meaning of the code. The command in line 29: COMMENT LEGAL USE nationality states
that the field uses the value label set called "nationality" which was defined in the label block in the
beginning of the check file. When the user enters this field they can press [F9] (or the [+] key on the
numeric keypad) to see a list of the legal values and their meaning. The COMMENT LEGAL command
can be used in three different ways which are explained in Comment legal.

.

32

The field block of the field D1 begins in line 32 and ends in line 46. The entry in the field is the date of
birth of the informant. The field block holds an AFTER ENTRY command from line 33 to line 45. The
commands in the AFTER ENTRY block are executed after the user has entered the date of birth and
the commands in the block serves two purposes: 1) to check if the date of birth seems reasonable and
2) to calculate the informant's age and to put the age in field D2.

The check on the date is made with two nested IF..THEN blocks. The first IF (line 34) is:

IF (Year(d1)<1900) OR (d1>Today) THEN

which means IF the year of the date entered in field D1 is less than 1900 OR if the date if field D1 is
bigger than today's date (i.e. the date lies in the future) THEN do something

If either of these two conditions are true then the command between the THEN (in line 34) and the
word ELSE (in line 37) are executed. In this case the user will see a message box on the screen
asking them to check the entered date of birth. After that the cursor will return to field D1 instead of
continuing to the next field.

If both conditions in the IF sentence (line 34) are false then the commands between the ELSE (line 37)
and ENDIF (line 44) are executed. If no ELSE command was present (as it is in this example) then the
next command being executed would be the one following the command ENDIF.

In this check file the commands in the ELSE..ENDIF block (line 37-44) contains a new IF..THEN-END
block. This show that IF..THEN..ELSE..ENDIF blocks can be nested. Be careful to pair the ELSEs and
ENDIFs correctly. In this example the innermost ENDIF (line 43) belongs to the innermost IF (line 38),
while the outer most ENDIF (line 44) belongs to the outermost IF (line 34).

The new IF..THEN..ELSE..ENDIF block begins with line 38:

IF (ROUND(INT((TODAY-D1)/365.25))<15) THEN

which means IF today's date minus the date entered in field D1 is less than 15 years THEN you must
do something.

If this is true then lines 39 and 40 are executed giving the user a warning that the entered birthday
means the informant is less than 15 years old and therefore not a parent. If the condition in line 38 is
false then the command in the ELSE block (line 42) is executed. This line calculates the age of the
person based on the date entered in field D1 and assigns the result to the field D2.

Line 43 ends the inner most IF..THEN block
Line 44 ends the outer most IF..THEN block
Line 45 ends the AFTER ENTRY block
Line 46 ends the field block for the field D1

This rather complicated example shows how several conditions can be checked with different actions
as a result. Nesting IF..THEN blocks is not limited to two blocks, there can be any number of nested
IF..THEN blocks.

WARNING: many nested IF..THEN blocks can make it difficult to keep track of all the ELSEs and
ENDIFs. Use indentation in the check file to make reading the check file easier.

The field block for field D2 begins in line 48. Only one check command is given, NOENTER, which
means the user cannot enter data in this field.

The field V1A asks if the informant has any children. If no, then the fields V1B to V2 are irrelevant and
the data entry process should continue in the field V6. This action is done in the field block for the field
V1A (lines 52-76). Lines 53-55 (JUMPS) states that focus must move to the field V6 if the letter N (for
no) is entered. Line 56 (MUSTENTER) states that data must be entered in this field.

Line 57 to line 75 contain an AFTER ENTRY..END block. This contains an IF..THEN..ELSE..ENDIF
block. If V1A is false or no, then the commands in lines 59-68 are executed. These lines clear the
contents of the fields V1B, V1C, V1D, V1E and V2 and hides the fields, making it impossible to enter
data in these fields since they are irrelevant if the informant has no children.

.

33

If V1A is true or yes, then commands in lines 70-73 are executed. The commands in these lines
UNHIDEs the same four fields, making it possible for the user to enter data.

The field block for field V1C (height of 1st child - see lines 90-104 in the check file) shows an example
of how to use BEFORE ENTRY. The BEFORE ENTRY..END block (lines 91-97) is executed as the
user enters this field, but before data can be entered. In this case the BEFORE ENTRY command is
used to enter a default value for the field V1C. The default value is half of the informant's height if the
informant's height was entered; otherwise the default value is 50 cm. The commands in the AFTER
ENTRY block in field V1C show a conditional GOTO. If only one child (i.e. V1B=1) then the average of
the children's height (V2) is equal to the height of that one child (V2=V1C) and the next field that
requires an input is V6 (GOTO V6). The same technique is used in the fields V1D and V1E (except
that these two field have no BEFORE ENTRY block).

The last thing that should be pointed out in the example check file is the benefits gained by using a
label block. The fields V12 and V13 both require a code number to indicate a range of years. Instead of
specifying the same value labels for both field, a single line in both fields does the job. If value labels
need to be changed later then they must only be changed in one place, that is in the label block.

Look through the rest of the check file and try to enter data in the data file to see how the check file
affects the flow of data entry.

A full reference of all check commands can be found in List of check commands.

User defined check functions

From EpiData Data Entry version 3.1 it is possible to extend the check language with user defined
check functions. The feature is for programming experts only since it involves programming a DLL-file
that specifies the new funktions.

Before a user defined check functions is used in a check file, the command LOAD dll-filename must be
used.

Examples including source code on how to make a DLL-file with new check functions can be found at
http://www.epidata.dk.

List of check commands

*
See COMMENTS

AFTER ENTRY
Specifies a block of commands that are executed after data has been entered in the field and / or the
user moves to another field. AFTER ENTRY is a block command and must be terminated with END.

If commands are specified in a field block without putting them in an AFTER ENTRY block then these
commands are interpreted as AFTER ENTRY commands.

Example:

AFTER ENTRY

<command>
<command>
...

END

AFTER FILE
Specifies a block of commands that are executed when a data file is closed. See also BEFORE FILE.

Example:

.

34

AFTER FILE

HELP "Remember to make a backup of the data file!" TYPE=WARNING
END

AFTER RECORD
Specifies a block of commands that are executed just before a new or modified record is saved. Use
AFTER RECORD to check if data are entered correctly. If a GOTO command is executed in the
AFTER RECORD block then the current record is not saved.

The example below is from a data file which asks the person entering data to enter an ID-number as
the first field (ID1) in the record and the same ID-number as the last field (ID2) as a control. If the two
ID-numbers are not the same or if either are missing then a warning is given, the field ID1 gets the
focus and the record is not saved.

Example:

AFTER RECORD

IF (ID1<>ID2) THEN
HELP "ID1=@ID1 and ID2=@ID2\n\nPlease check the data" TYPE=WARNING
GOTO ID1
EXIT

ENDIF
IF (ID1 = .) OR (ID2 = .) THEN

HELP "ID-number must be entered in ID1 and ID2" TYPE=ERROR
IF ID1 = . THEN

GOTO ID1
ELSE

GOTO ID2
ENDIF

ENDIF
END

AUTOJUMP
Unconditional jump to another field. The jump is made as the user leaves the field. See also JUMPS.

Instead of specifying a field name the words END or WRITE can be used. AUTOJUMP END makes
the cursor jump to the last field in the record. AUTOJUMP WRITE causes the Write record to disk?
dialog box to appear. After clicking Yes the next or a new record is loaded.

AUTOJUMP SKIPNEXTFIELD will move the focus from the current field to the second-next field.

Example:

AUTOJUMP [name of field to jump to]
AUTOJUMP END
AUTOJUMP WRITE
AUTOJUMP SKIPNEXTFIELD

AUTOSAVE
When a modified record is left then the user is asked Save record to disk? giving the option not to
save the modified record. This function can be suppressed by adding the command AUTOSAVE to the
check file. The command can also be given as a program parameter.

Be careful when using AUTOSAVE. Existing records in the data file may be overwritten without any
warning.

Example:

BEFORE FILE
AUTOSAVE

END

.

35

AUTOSEARCH
Autosearch is a look-up function that checks the remaining data file for records with certain data. Look-
up can be defined to be on one field or a combination of several fields.

Example: In a file with several fields ID and v10 are two sequential fields. V10 contains
”AUTOSEARCH IDNUM v10”. After entering data in V10 EpiData searches the existing records to find
a record with the same values in ID and v10. If a match is found, a messagebox will appear asking
whether you want to continue data entry in the existing record or create a new record. If no match is
found, data entry can continue without interuption.

AUTOSEARCH LIST codenum v10 as a field block command will make a list of matching records
appear in stead of only a messagebox. In the list of matching records the arrowkeys or the mouse can
be used to point out in which record data entry should continue.

Autosearch is helpful in preventing creation of duplicate records.

Examples:

AUTOSEARCH v10
AUTOSEARCH LIST codenum v10 v20

BACKUP
The backup command will copy the REC files (and other EpiData related files) including files in
subdirectories to the specified location when the REC files is closed. It will automatically overwrite any
existing files in the location. Any CHK, QES, NOT file with the same name as the REC file will also be
copied. BACKUP must be placed in an after file block. If your backup path includes spaces make sure
you have quotes before and after. BACKUP only starts if there has been a change to data.

If you are making a system with RELATE, then all the open REC files plus associated files will be
copied.

BACKUP can - instead of just making a copy a the files - save the backup-files in either a compressed
file (zip-file) or an encrypted zip-file. The resulting zip-file or zky-file (an encrypted zip-file) can
automatically have the current date included in the filename in the form "12nov04" if the option DATE is
used.

The syntax of the backup command is:

BACKUP distination-directory or
BACKUP distination-directory [ZIP zip-file-name [DATE]] or
BACKUP distination-directory [ENCRYPT name-of-encrypted-zip-file password [DATE]]

Examples:

Copy data file(s), check-files etc. to a backup directory:

AFTER FILE
BACKUP F:\backup\dataentryprojects

END

Save data file(s) etc. in a new compressed zip-file, include current date in filename:

AFTER FILE
BACKUP F:\backup\distinationdirectory ZIP myzipfile.zip [DATE]

END

Save data file(s) etc. in a new encrypted data file, do not include current date in filename:

AFTER FILE

BACKUP F:\dist_dir ENCRYPT myencryptfile secretword
END

.

36

BEEP
This will give a sound when the command is invoked. The BEEP has three subtypes giving different
sounds. A little experimentation is needed since setup of sounds varies between computers. For the
standard setup of sounds in windows the standard beep is used for beeping without qualifier. For
CONFIRMATION the exclamation sign (!) and for WARNING the (?) is indicated in the sound setup
system. BEEP can be used in combination with IF ... THENENDIF blocks.

Example:
BEEP
BEEP CONFIRMATION
BEEP WARNING

To use warning sounds without the BEEP command, see options advanced tab page.

BEFORE ENTRY
Specifies a block of commands that are executed when the field receives the focus, but before data
can be entered. BEFORE ENTRY is a block command and must be terminated with END.

If commands are specified in a field block without putting them in either an AFTER ENTRY block or a
BEFORE ENTRY block then these commands are interpreted as AFTER ENTRY commands.

Example:

BEFORE ENTRY

<command>
<command>
...

END

BEFORE FILE
Specifies a block of commands that are executed when a data file is opened for data entry but before
any data can be entered. See also AFTER FILE.

BEFORE FILE is a good place to define temporary variables used in the data file.

Example:

BEFORE FILE

HELP "Welcome to my data file"
DEFINE varAge ###
DEFINE varRefDate <dd/mm/yyyy>

END

.

37

BEFORE RECORD
Specifies a block of commands that are executed when a record is entered, but before any data can be
entered. See also AFTER RECORD.

Example:

BEFORE RECORD

varAge = 33
END

CLEAR
Clears the contents of the specified field. If no field name is specified after CLEAR then the field
containing the command is cleared.

Examples:

CLEAR
CLEAR field5

CLEAR COMMENT LEGAL
Clears the comment legal definition of the field, which field block it is defined in. Usefull in connection
with conditional comment legals, i.e. a comment legal definition in a if-then structure.

COLOR
The checkcommand COLOR is used to change the backgroundcolor of the data entry form, the color
of the text ("questions") in the form or the color of the data entry fields. To make EpiData able to read
Epi Info check files, EpiData can handle the colorcodes used in Epi Info 6. But EpiData also
understands text indicating the colors.

Select the menu item Tools | Color table to see the colors available in EpiData.

Using colorwords:
COLOR DATA textcolor [backgroundcolor [highlightcolor]]
COLOR QUESTION textcolor [backgroundcolor of question]
COLOR BACKGROUND form_backgroundcolor

Using Epi Info colorcodes:
COLOR DATA code
COLOR QUESTION code
COLOR BACKGROUND code

Examples:

COLOR DATA BLUE WHITE LIME Gives data entry fields with white background, blue

letters and a lime background when the field has
focus

COLOR DATA BLACK YELLOW Data entry fields with yellow background and black
letters. Highlight color is defined in Options

COLOR DATA 31 Data entry fields with blue background and white
letters (see tools | color table | Number codes)

COLOR BACKGROUND WHITE
COLOR QUESTION BLACK
COLOR DATA BLACK YELLOW AQUA

Will give black text on white background.
Data fields will be yellow with black text and
current field will be light blue (aqua)

COMMENTS (*)
Comment lines must begin with the character *. The whole line beginning with this character is ignored
when the check file is interpreted.

.

38

COMMENT LEGAL
Works in the same way as LEGAL in the sense that the command specifies what entries are allowed
in a field, but COMMENT LEGAL also gives the user the option to see a list of the legal values and
their meanings by pressing [F9] or the [+] key on the numeric keypad during the data entry process.

COMMENT LEGAL has four different forms:

1) A block command COMMENT LEGAL

Denmark
Somalia
Other
END

2) A reference to a COMMENT
LEGAL block in another field

COMMENT LEGAL USE field name

3) A reference to a set of value
labels defined in a LABELBLOCK

COMMENT LEGAL USE labelname

4) A reference to data file that
contains the values and labels

COMMENT LEGAL filename[.rec]

Please notice the word USE must be added when referencing comment legals defined in another field
or in a label block.

When referencing a data file the file extension (.REC) is not required. The referenced data file (a look-
up table) must have two fields that are defined as KEY or KEY UNIQUE fields. The field with KEY 1 (or
KEY UNIQUE 1) is the value field; the field with KEY 2 is the label field.

COMMENT LEGAL can also be used in IF..THEN structures (e.g. for hierarchical coding). This can be
useful if the set of value labels (comment legals) used in a field should be dependent on the value of
another field. See example below or see the sample files HIERARTEST.REC and HIERARTEST.CHK.
See also the TYPE COMMENT command below.

If the word SHOW is added to a COMMENT LEGAL then the list of possible values are shown during
data entry if the field is empty.

Important note: Be cautious when defining comment legal terms. The field which receives the values of
the comment legal must be appropriate. E.g. if you define -mus ”Mouse was the animal”- and try to
enter into a <A > field the check file will be rejected, since only MUS not mus is allowed in such a
field.

Examples:

COMMENT LEGAL

1 ”Male gender”
2 Female

END

COMMENT LEGAL
1 One
* 2 Two (The * comments out the line)
3 Three

END

COMMENT LEGAL USE [field name] SHOW

COMMENT LEGAL USE [labelname]

Examples of comment legal in IF..THEN structures

V1 {User selects a country}

COMMENT LEGAL
1 USA
2 CANADA

END
END

.

39

V2 {User selects a state}
IF V1=1 THEN

COMMENT LEGAL
1 Alabama
2 ”New York”
3 Nevada
4 Oklahoma

.....
END

ENDIF
IF V1=2 THEN

COMMENT LEGAL
1 ”Nova Scotia”
2 Quebec

....
END

ENDIF
END

Example of COMMENT LEGAL data file name:

NAMELOOKUP.REC is a data file with two fields: ID (integer) and NAME (text field). ID is in the check
file defined as KEY UNIQUE 1, NAME is defined as KEY 2.

PATIENTDATA.REC is a data file made from this .QES file:

ID Enter ID-code of patient #####
HEIGHT Patient's height in kg ###
WEIGHT Patient's weight in kg ###

The check file of PERSONDATA.REC (PERSONDATA.CHK) contains:

ID

COMMENT LEGAL NameLookup
TYPE COMMENT

END

When data are entered in PATIENTDATA.REC then only patients whose ID is found in
NAMELOOKUP.REC are accepted as legal entries. When the ID field loses the focus the patient's
name will be typed next to the ID field.

Important note: You must enter at least a few names in the lookup file before it can be used in the
”comment legal” . Otherwise an error occurs. The reason for this is that the index tables of the lookup
file must be ready before the ”comment legal” can refer to the lookup file.

On the www.epidata.dk site examples page an extended example of this is found based on a list of
approx. 250 bacteria names and number codes.

.

40

CONFIRM
When a field is filled, the cursor automatically moves to the next field. This function can be suppressed
by using the command CONFIRM in the check file. If CONFIRM is set then the next field will be
selected when the [Enter] key is pressed.

See also CONFIRMFIELD.

Example:

BEFORE FILE

CONFIRM
END

CONFIRMFIELD
Same function as CONFIRM, but where CONFIRM handles all fields in the data file, CONFIRMFIELD
only deals with one field. This command may only be used in a field block.

Example:

V1
CONFIRMFIELD
MUSTENTER

END

COPYTOCLIPBOARD
The command COPYTOCLIPBOARD can be used in BEFORE/AFTER ENTRY blocks to copy a string
and/or the contents of one or more data fields to the standard Windows clipboard. Data copied to the
clipboard can be pasted into any other Windows application.

COPYTOCLIPBOARD takes text inclosed in double quotes as parameter. Use @ in front of a field
name or of the name of a DEFINEd variable to copy the contents of the field or variable to the
clipboard.

Examples:

V10

AFTER ENTRY
V20 = String(V5) + "-" + String(V10)
COPYTOCLIPBOARD "Codenumber=@V20"

END
END

COPYTOCLIPBOARD "Field V1 equals @V1 and V2 equals @V2"

DEFINE
Allows new, temporary variables to be defined. These variables may be used to hold temporary values
in calculations and to carry values from one record to another.

The DEFINE command can hold the optional words CUMULATIVE or GLOBAL. Cumulative variables
are not reset when a new record is entered. If CUMULATIVE is omitted then the variable is set to
missing between records. GLOBAL variables are never reset and may therefore be used to transfer
data between related data files (see RELATE).

The names of the DEFINEd variables may be up to 16 characters in length. Temporary variables are
not saved in the data file.

In relational data file systems the same DEFINE can be used in several check files. Duplicate
DEFINEs are ignored.

.

41

Examples:

DEFINE MyTempVar #### (defines a 4-digit integer called MyTempVar)
DEFINE varSurname <A > CUMULATIVE
DEFINE tempDate <dd/mm/yyyy>
DEFINE varCity GLOBAL

EXECUTE
Execute can be used in the checkfile to run external programs. It can be specified if EpiData must halt
untill the called program has been closed.

Syntax:
EXECUTE programname [parameters] WAIT | NOWAIT [HIDE]

WAIT tells EpiData to halt untill the called program has been closed. NOWAIT will open the specified
program, but EpiData continue execution (e.g. runs the rest of the commands in the after entry block).

HIDE is optional. If specified then the called program will be run without showing on the screen.
WARNING: Use only this option if the called program closes itself without user interaction.

The programname can be the name of an EXE-file (i.e. an application) or a document, a picturefile,
etc.

If either program name or parameters include spaces then they must be inclosed in double quotes.

Examples:

EXECUTE c:\windows\notepad.exe WAIT Opens notepad. EpiData is halted

untill notepad is closed.
EXECUTE "c:\my documents\ICD10 list.doc" NOWAIT Opens the document "ICD10

list.doc" with the default program
for .doc files (usually Word).

EXECUTE pkzip.exe "t.zip d:\data*.*" NOWAIT
HIDE

Runs pkzip and passes the
parameters "t.zip d:\data*.*" to
pkzip. Pkzip is run in the
background without opening a
window on the screen.

PICTNUM
DEFINE tmpName _________________
AFTER ENTRY

LET tmpName="d:\pics\picture"+pictnum+".jpg"
EXECUTE @tmpName WAIT

END
END

The field PICTNUM is a integer
field. If user enters the number 3
then a .jpg picture file called
"d:\pics\picture3.jpg" will be opened
by the default program for .jpg files.
EpiData halts until pictureviewer (or
–editor) is closed.
@tmpName means that
@tmpName should be replaced by
the contents of the variable
tmpName.

This block will first backup the data to the specified folder (c:\temp\), Then it will ask whether to create
a zip file with the name of todays date. (Pkzip must be in the so-called search path).

after file
define tmpz _____________________________
BACKUP c:\temp\
help “Create zip file ? 1:yes 2:no ” keys=”12” type=CONFIRMATION
if resultvalue = 1 then

let tmpz = string(day(today))
if month(today) < 10 then
tmpz = tmpz + "0" + string(month(today)) + string(year(today)) + ".zip"

else
tmpz = tmpz + string(month(today))+ string(year(today))+ ".zip c:\temp*.*"

endif
endif
execute pkzip.exe "@tempzip -r -u" wait hide

.

42

END

EXIT
Stops the execution of a block of commands and leaves the block (e.g. an AFTER ENTRY block).
EXIT can be used to avoid a long list of IF..THEN-ELSE.

In the example a number of checks are made of a date field (<dd/mm/yyyy>). After every check EXIT
makes sure that the AFTER ENTRY block is left before any more commands are executed.

Example:

d1

AFTER ENTRY
IF D1 = . THEN

HELP "A date must be entered" TYPE=ERROR
GOTO D1
EXIT

ENDIF
IF D1 > TODAY THEN

HELP "A future date is not valid" TYPE=WARNING
GOTO D1
EXIT

ENDIF
IF D1 < TODAY-365 THEN

HELP "@D1 is more than one year ago. Please re-enter" TYPE=ERROR
GOTO D1
EXIT

ENDIF
* The following commands are only executed
* if all above checks indicates a valid date
D2 = D1+14
V4 = Year(D1)

END
END

GOTO
Changes the focus (i.e. moves the cursor) to the specified field. If no field name is specified after
GOTO then the jump is made to the field containing the command.

Examples:

GOTO
GOTO field10
GOTO WRITEREC (writerec can be abbreviated to write)

GOTO WRITEREC is a special form of the GOTO command which stops further data entry and
causes EpiData to display the Save record to disk? dialog box.

HELP
Shows a message box on the screen with the specified text. The user must click the OK button before
data entry can continue. Four different types of message boxes exist: information boxes, warnings,
confirmation boxes and error boxes. If no message box type is specified then an information box is
displayed. The type of message box used can be indicated by the first letter instead of writing the full
name of the type (e.g. ”C” for confirmation box).

Insert "\n" to break a line and continue on the next line.

Current values of fields or DEFINEd variables may be shown in the help message by using @field
name. If an @-character is to be displayed (e.g. as part of an e-mail address) then use two @s.

A special use of the HELP command prompts the user to press one of a series of keys to continue.
The syntax is HELP "Do you want to continue (y/n)?" KEYS="YN". This example will show a box on
the screen with the message. The box is removed and data entry is resumed when the user presses

.

43

the [Y] key or the [N] key. The result of the operation is saved in the predefined variable
RESULTLETTER and RESULTVALUE. To continue the example: If the user presses [N] then
RESULTLETTER will be set to the string "N" and RESULTVALUE will be set to the number 2 because
the key pressed is second in the series of KEYS.

Examples:

HELP "This is the information text"
HELP "This is a \n two-line warning box" TYPE=WARNING
HELP "This is also a warning box" TYPE=W
HELP "Please confirm" TYPE=CONFIRMATION
HELP "You made an error!" TYPE=ERROR
HELP "The field V1 is equal to @V1"
HELP "EpiData's e-mail address is Info@@EpiData.dk"

Example using KEYS:

V1
AFTER ENTRY

HELP "Select option:\n A. Enter personal information\n B. Enter
occupational information\n C. Enter health history" KEYS="123"
TYPE=CONFIRMATION

IF RESULTLETTER="A" THEN
* The user pressed the key "A"
GOTO V100

ELSE IF RESULTVALUE=2 THEN
* The user pressed the key "B"
GOTO V200

ENDIF
IF RESULTVALUE=3 THEN

GOTO V300
ENDIF

END
END

HIDE, UNHIDE
Hides or unhides a field. When a field is hidden it changes colour on the screen and the user cannot
enter data in the field. If no field name is specified after the word HIDE or UNHIDE then the field
containing the command is hidden or unhidden.

Examples:

HIDE
HIDE field5
UNHIDE
UNHIDE field5

INCLUDE
Includes a file in the checkfile at the point, where the INCLUDE command is found. The include
command cannot be used in files that them-selves are included. Check-files containing INCLUDE
cannot be edited using the Add/Revise Checks funktion, only by using the editor.

Examples:

LABELBLOCK

LABEL numbers
include test6.inc
4 four
5 five
6 six

END
END

The file test6.inc could in this example contain this:

.

44

1 one
2 two
3 three

IF..THEN

The structure of the IF..THEN command is:

IF <expression> THEN

<commands to execute if expression is true>
ENDIF

or

IF <condition expression> THEN

<commands to execute if condition is true>
ELSE

<commands to execute if condition is false>
ENDIF

Remember to end the IF..THEN block with the word ENDIF. The commands to be executed can be
several lines and can include other IF..THEN commands (nested IFs).

The condition expression must have a Boolean result (i.e. either True or False). For a list of operators
and functions that may be use in condition expression, see Operators and functions

The condition expression can have several parts separated by AND or OR. Every part must be
enclosed in round brackets (this is a different from Epi Info). Example: IF Field2 > 5 AND Field3 < 10
THEN is not allowed: Use IF (Field2 > 5) AND (Field3 < 10) THEN instead.

Errors in IF conditions are ignored during data entry. To help catching errors in IF conditions the option
Errors messages can be set. Please refer to the Options

Examples:

IF field1 > 10 THEN

GOTO field10
ENDIF

IF (Cos(field1) * Sin(field1) < 0.3) AND (field2 <> 0) THEN
IF field2 < field3 THEN

HELP "Something is wrong."
GOTO

ENDIF
ELSE

field4 = Tan(field1)
GOTO field23

ENDIF

IF field10 = . THEN
field11 = .
field12 = 0
date1 = "12/03/2001"

ENDIF

JUMPS

Conditional jumps to other fields. JUMPS is a block command and must be terminated by END. The
list between the words JUMPS and END specifies: 1) a possible value of the field after the user has
entered data and 2) a name of the field to jump to if the user has entered the specified value. See also
AUTOJUMP.

.

45

Instead of specifying a field name the words END or WRITE can be used. END makes the cursor jump
to the last field in the record. WRITE causes the Write record to disk? dialog box to appear.

SKIPNEXTFIELD can also be used instead of a field name. This will move focus from the current field
to the second next field.

Often when JUMPS is used the fields between the field jumped from and the field jumped to should be
cleared or set to a special ”missing” value. To ensure these fields are not filled with junk data the
command JUMPS RESET can be used. JUMPS RESET clears all fields between the field with the
JUMP definition and the target field. If a character is added after RESET then the irrelevant fields are
filled with this character (except date fields): JUMPS RESET 9 will fill all irrelevant fields with 9s.
RESET cannot be used with AUTOJUMP and is ignored if a jump to WRITE is made.

Examples:

JUMPS

1 V5
2 V10
3 END
4 WRITE

END

JUMPS RESET
1 V5
2 SKIPNEXTFIELD

END

JUMPS RESET 9
1 V5
2 V30

END

Here a jump to v5 would fill fields from current field to V5 with 9’s, e.g. a ### field would then contain
999 and a character field of length 5 _____ would contain “99999”.

KEY
This syntax is: KEY {UNIQUE} {keynumber}

This command creates an index for the field in which it appears. The index is another file that speeds
up the search for records containing a particular value in the field. If the word UNIQUE appears after
KEY, the index is a special one for unique identifiers. JONES cannot appear twice, and NAME would
therefore not be a proper choice for a KEY UNIQUE field. Such fields contain unique identification
numbers that are assigned to only one record each. KEY (without UNIQUE) can be assigned to any
field and allows data values to occur in more than one record, and may be used with fields like NAME,
COUNTY, or AGE.

KEYs have four purposes:

1. Searching for records in ENTER using KEY fields is many times faster than normal searches if the
file is longer than a few hundred records.

2. To specify a sort order in the LIST DATA function

3. To make sure that (e.g.) an ID-number is entered only once (only KEY UNIQUE)

4. To allow files to be RELATEd (i.e. joined) to each other during data entry.

The KEY number is an optional number that identifies the sequence of the keys in the index file. If no
KEY number is given then the order of the keys are decided by the order of the fields with KEY
commands.

If a KEY field is longer than 30 characters, then only the first 30 characters are used in the key.

A maximum of 10 KEY fields can be defined.

.

46

Index files are created automatically when a data file is opened for entry. If the number of records or
number of KEY fields of the data file does not match the index file then the index is rebuilt. Use the
function Rebuild Indexes in the Tools menu if you want to force EpiData to rebuild the indexes.

Examples:

IDNUMBER

KEY UNIQUE 1
END

NAME
KEY

END

LABEL
See LABELBLOCK

LABELBLOCK
A label block contains definitions of sets of value labels. The block must end with the command END
and it cannot be part of a field block. Each set of value labels must begin with the command LABEL
followed by the name of the label set and it must end with the command END. The value label sets
defined in the optional label block may be used by COMMENT LEGAL USE [labelname] commands.

The example shows how to define two sets of value labels. One is called "yesno", the other "sex".

Example:

LABELBLOCK

LABEL yesno
1 Yes
2 No

END
LABEL sex

1 Male
2 Female
9 ”Unknown sex”

END
END

LEGAL
Specifies legal values for a field (i.e. values that are allowed to be entered in the field). LEGAL is a
block command and must be terminated by END.

Instead of defining the same legals for several fields you can define legal values in one field and then
refer this definition to other fields. This is done using the command LEGAL USE field name.

The example shows how define only even numbers smaller than 10 as legal entries in the field V1. The
same legal-definition is applied to the field V2 by LEGAL USE.

Examples:

V1

LEGAL
2
4
6
8

END
END

V2
LEGAL USE V1

END

.

47

LET
Assigns a value or the result of a calculation to a field or a DEFINEd variable. For a list of operators
and functions that can be use in calculations and other expressions, see Operators and functions

Errors in LET expressions will be ignored during data entry. To help finding errors the option Error
messages can be set. Please refer to the Options

Note that the result of a let statement with several fields will not return a value if any of the fields have
the value missing. The logic of this behaviour is that if any one field has the value “missing”, then the
combination of missing and other values is not defined.

The word LET is optional. The following examples are interpreted in the same way.

Examples:

LET field5 = (field2/field3)+INT(field4)
field5 = (field2/field3)+INT(field4)

Other examples:

LET date1 = "14/09/2000" (assigns a date to a date field)
LET v1 = . (sets the field v1 to missing value)
LET b1 = ((15/2)>4) (sets a Boolean field to "Y")
LET b2 = "Y" (sets a Boolean field to "Y")
LET b3 = False (sets a Boolean field to "N")
LET v3 = integer(copy(s2,1,2)) (extracts the first two characters in a

string field and assigns result to an
integer field)

LET Text1 = "Q"+String(Number) (assigns Q14 to the string field Text1
if Number is equal to 14)

NOTE: When you use LET statements in a BEFORE FILE or BEFORE RECORD the status of a
record as being edited does NOT change, whereas in a BEFORE ENTRY of first field does change
this. But placing in an AFTER ENTRY block in first field does NOT change this state unless the cursor
was moved out of the first field.

Before a user defined check functions is used in a check file, the command LOAD dll-filename must be
used.

LOAD

Load a DLL file containing user defined functions.

Examples including source code on how to make a DLL-file with new check functions can be found at
http://www.epidata.dk

MISSINGVALUE
MISSINGVALUE has three syntaxes:

MISSINGVALUE x [y [z]] which can be used in fieldblocks, and
MISSINGVALUE ALL x [y [z]] which can be used in BEFORE FILE blocks, and
MISSINGVALUE field1-field5, field6 …. x [y [z]] which can be used in BEFORE FILE blocks

The command MISSINGVALUE can be used to assign 1, 2 or 3 different values that have a special
meaning, e.g. 9=value not specified (in questionnaire), 8=field is irrelevant. MISSINGVALUE ALL sets
1, 2 or 3 different missing values for all numeric fields in the datafile at once. MISSINGVALUE field1….
can be used in the BEFORE FILE block to specify missing value for several fields. MISSINGVALUE x y
z can be used in a fieldblock and will only apply to the field that the field block concerns. If both
MISSINGVALUE ALL and MISSINGVALUE in the field block is used, then the assignment in the field
block takes precedence.

.

48

During dataentry a minus-character (-) can be entered in fields that have MISSINGVALUE defined.
When leaving the field the “–“ will be changed to the first of the 1, 2 or 3 defined MISSINGVALUEs.

A MISSINGVALUE extends the range, legal or comment legal definitions of a field. If MISSINGVALUE
9 is part of a field block then the value 9 is allowed to be entered in addition to e.g. RANGE 1-5

MISSING VALUEs will be exported to Stata 8 in the native Stata form: .a, .b and .c. Likewise will import
of a Stata 8 datafile to EpiData result in a MISSINGVALUE definition if the values .a, .b or .c are found
in the datafile.

Examples:

(in before file block):
MISSINGVALUE ALL 9 8 assigns primary missing value 9 and secondary 8 to all numeric fields
MISSINGVALUE V1-V4, V10, V20 9 8 7 assings missing values to all fields between (and
including) the fields V1 and V4 and also to the fields V10 and V20

(in the field block):
MISSINGVALUE 9 8 7 assigns three different missing values to the field that the fieldblock
concerns.

MUSTENTER
Ensures that the field cannot be left blank. MUSTENTER can stall the data entry process if data are
missing. It is a good idea to specify a missing value code for MUSTENTER fields and to use the
MUSTENTER command sparingly.

Example:

MUSTENTER

NOENTER
Protects the field in the sense that user cannot enter data in a field that has NOENTER in the field
block. NOENTER may be used if the field is to contain calculated data (such as compound identifier
numbers) only.

Example:

NOENTER

QUIT
The QUIT command in a check file stops data entry and closes the data entry form.

RANGE
Specifies a range of legal values for the field. The words -INFINITY and INFINITY can be used if either
the lower limit or the upper limit of the range is irrelevant.

Examples:

RANGE -5 5 (allows numbers between and including -5 and 5)
RANGE -INFINITY 99 (allows all numbers smaller than 100)
RANGE 100 INFINITY (allows all numbers greater than or equal to 100)
RANGE 1/3/2001 31/3/2001 (allows dates in March 2001 – note the lack of quotes)

Be careful when you specify RANGE. If you use COMMENT LEGAL or LEGAL in the same field you
can produce conflicting rules. E.g. if range specifies 1-5 and LEGAL indicates 7 and 8. Then you can
newer enter data into that field.

.

49

RELATE
RELATE is a command used for linking two different data files relationally during data entry. When the
RELATE command is encountered in the main (parent) file, data entry continues in the related (child)
file. The syntax of RELATE is:

RELATE identifier_field filename [1]

The identifier field is the name of field that exists in both the main (parent) data file and the related
(child) data file. The identifier field does not have to be the same field as the field that calls RELATE.
The identifier field must be KEY UNIQUE in the main (parent) data file and KEY in the related (child)
data file.

If only one record in the related data file is allowed for every record in the mail data file, the number "1"
should follow the command. Otherwise any number of records may be entered into the related file for
each record in the main data file with the same value in the identifier field. In this case the user returns
to the main data file by pressing [F10], [Ctrl] + [R] or by clicking the close control of the related data
entry form.

If a related file has a BEFORE FILE block, the commands in this block will be executed every time the
related data file is accessed.

When a data file is opened and its check file contains one or more RELATE commands then all related
data files are opened. The data files can be seen as tabs in the bottom of the screen. RELATEd files
can be browsed at any time, but they will remain in read only state until called by the main data file's
RELATE command.

All data files are closed when the main data file is closed. Clicking the close control of a related data
entry form will not close the form but will bring it's parent data files form into focus.

An example of the use of relate is shown in the files HOUSE.REC, PERSON.REC and VISITS.REC
found in the samples directory in the EpiData program directory. Use Enter Data and select the data
file HOUSE.REC to try the example. On the samples page of www.epidata.dk several comprehensive
examples are available showing the flexibility of the relate principle.

NOTE: If you place RELATE in the last field of a data entry form then upon return from a “child”
record, EpiDta will place the input at the upper level to a new record. To avoid this place a dummy field
as the last field. If the key unique status is violated relate will not be performed. The user will be guided
to either move to the record with the value duplicated or to edit the value.

REPEAT
The field on the next new record is filled out with the value entered in the same field in the previous
record.

Example:

REPEAT

SHOWLASTRECORD
If SHOWLASTRECORD is present in the check file, then EpiData will open a data file showing the last
record in the file instead of a new, blank record.

Example:

BEFORE FILE

SHOWLASTRECORD
END

TOPOFSCREEN

TopOfScreen in a fieldblock will result in the field being moved to the top of the data entry form when
the user enters the field. This command can be used to mimick a change of page. Add a number to the

.

50

command to indicate the number of lines that should be shown above the data entry field when the
field is moved to the top of the screen.

Example:

TOPOFSCREEN
TOPOFSCREEN 2

TYPE
TYPE is used to show text on screen next to an entry field during data entry. An optional colour can be
specified.

Syntax: TYPE "text" [colour].

Valid colours are: Aqua, Black, Blue, Dkgray, Fuchsia, Gray, Green, Lime, Ltgray, Maroon, Navy, Olive,
Purple, Red, Silver, Teal, White, Yellow. See samples of the colours be selecting the menuitem Tools |
Color table.

If no colour is specified, the default blue colour is used.

Current values of fields of DEFINEd variables can be shown in the TYPE message by using @field
name. If an @-character is to be displayed (e.g. as part of an e-mail address) then use two @s.

Example:

V1

AFTER ENTRY
IF V1<5 THEN

TYPE "Smaller than 5" RED
ELSE

TYPE "V1=@V1 which is greater than 4"
END

END
END

TYPE COMMENT
Can be used in fields that have a COMMENT LEGAL defined. When a value is entered in the field and
the cursor is moved to another field then the text connected to the value is written either to the right of
the field or to a specified text field depending on the syntax used. This can be used by the person
entering data to make sure that the right value was entered.
NOTE: TYPE COMMENT cannot be placed in BEFORE / AFTER ENTRY blocks, only with this
syntax: TYPE COMMENT ALLFIELDS [colour]

A TYPE COMMENT ALLFIELDS defined in a BEFORE FILE block will apply to all fields that have a
COMMENT LEGAL defined.

An optional colour code can be added to use a different colour than the default blue. Valid colours are:
Aqua, Black, Blue, Dkgray, Fuchsia, Gray, Green, Lime, Ltgray, Maroon, Navy, Olive, Purple, Red,
Silver, Teal, White, Yellow. See samples of the colours be selecting the menuitem Tools | Color table.

Syntax:
TYPE COMMENT [colour] or
TYPE COMMENT field name
TYPE COMMENT ALLFIELDS [colour]

TYPE COMMENT fieldname replaces the Epi Info commands CODES/CODEFIELD.

.

51

Example:

A field has these commands in the check file:

V1

COMMENT LEGAL
1 Dog
2 Cat
3 Lion
4 Rat

END
TYPE COMMENT YELLOW

END

If the value 2 is entered in the field then the text "Cat" is written to the right of the field when the cursor
leaves the field.

If TYPE COMMENT S1 was used then the text "Cat" would be written in the entry field S1, provided S1
is a text field.

TYPE COMMENT is recommended for use with hierarchical coding schemes (see COMMENT
LEGAL).

TYPE STATUSBAR
In questionnaires with many fields it can be useful to keep track of what record is being edited by
having (e.g.) the ID number of the questionnaire on screen no matter what part of the questionnaire is
currently being displayed.

By using TYPE STATUSBAR in one (and only one) field the current value of the field will be shown on
the status bar.

An optional pice of explanatory text can be added to the command (e.g. to show the name of the field
whose value is shown in the status bar).

An optional colour code can be added to use a different colour than the default blue. Valid colours are:
Aqua, Black, Blue, Dkgray, Fuchsia, Gray, Green, Lime, Ltgray, Maroon, Navy, Olive, Purple, Red,
Silver, Teal, White, Yellow. See samples of the colours be selecting the menuitem Tools | Color table.

Examples:

IDCODE

TYPE STATUSBAR "IDCODE = "
END

IDCODE

TYPE STATUSBAR "" LIME
END

If you invoke dataentry notes during dataentry, then the text currenty written on the statusbar will be
included. This is a good way of getting e.g. an id number into the notes.

UNHIDE
See HIDE

.

52

WRITENOTE
Adds a comment to the data entry notes file The current content of an entry field can be written by
prefixing the field name with @. Add the option SHOW to show the data entry notes file during data
entry.

Examples:

V10

AFTER ENTRY
IF V10 > 100 THEN

WRITENOTE "Please check if the value @V10 in field V10 is really
true"

ENDIF
IF V10 > 110 THEN

WRITENOTE "Unusual value of field V10 is entered. Please specify
reasons for this value:" SHOW

ENDIF
END

END

.

53

Operators and functions

This list shows the operators and functions available for Boolean expressions used in IF commands
and calculations and expressions in LET commands.

Operators (arithmetic, logical and relational)

Functions:

When you read the functions make notice of the three parts describing each function. The name. The
input to the function (e.g. a real or floating point number) and what type of data is returned from the
function (e.g. an integer). If you think a function is not working. Then check if the output has the correct
type (string, integer, floating real etc).

Arithmetic functions String functions Date functions
Operators

ARITHMETIC OPERATORS

Operator Operation Type of Data Result type
^ exponent integer floating point
 floating point floating point
+ addition integer integer
 floating point floating point
 string string
- subtraction integer integer
 floating point floating point
* multiplication integer integer
 floating point floating point
/ division integer floating point
 floating point floating point
div integer division integer integer
mod remainder integer integer

LOGICAL OPERATORS

Operator Operation Type of Expression Result type
not negation Boolean Boolean
and logical AND Boolean Boolean
or logical OR Boolean Boolean
xor logical XOR Boolean Boolean

RELATIONAL OPERATORS

Operator Operation Comparing values Result type
= equal compatible Boolean
<> not equal compatible Boolean
< less than compatible Boolean
> greater than compatible Boolean
<= less than or equal to compatible Boolean
>= greater than or

equal to
compatible Boolean

The relational operators may also be used on text strings. Boolean result type is the same as the
answer is True or False that is, True: Yes or No.

.

54

Arithmetic functions

Functions are used to get change a number or string to something else. Float is used to describe a
decimal number in contrast to an integer which does not have any decimals. If you have problems in
getting a value into a field check that the field has the appropriate type. Sometimes you must convert a
float value to an integer or vise versa.

ABS(X): FLOAT
Returns the absolute value of the argument. x is an integer-type or float-type expression.
ABS(4)=4, ABS(-4)=4

ARCTAN(X: FLOAT): FLOAT
Calculates the arctangent of x. Calculate other trigonometric functions using Sin, Cos, and ArcTan in
the following expressions:

Tan(x) = Sin(x) / Cos(x)
ArcSin(x) = ArcTan (x/sqrt (1-sqr (x)))
ArcCos(x) = ArcTan (sqrt (1-sqr (x)) /x)

COS(X: FLOAT): FLOAT
Returns the cosine of the angle x, in radians.

EXP(X: FLOAT): FLOAT
Returns the value of e raised to the power of x, where e is the base of the natural logarithms.

FLOAT(X): FLOAT
Converts x to a float. If FIELD1 equals "Q34.3" then Float(pos(FIELD1,2,4)) returns the float 34.3.

FRAC(X: FLOAT): FLOAT
Returns the fractional part of the argument x where x is a float-type expression. The result is the
fractional part of x; that is: Frac(x) = x - Int(x).

INT(X: FLOAT): FLOAT
x is a float-type expression. The result is the integer part of x; that is, x rounded toward zero. Note that
the result is a float (decimal number) even if it contains only the integer part of x.

INTEGER(X): INTEGER
Integer converts a string to an integer number. Obviously only if the string contains a number.
If FIELD1 equals '”b410” then Integer(pos(FIELD1,3,2)) equals the integer 41.
If FIELD1 equals ”410” then Integer(FIELD1) equals 410

LN(X: FLOAT): FLOAT
Returns the natural logarithm of the float-type expression x.

LOG10(X: FLOAT): FLOAT
Returns the base 10 logarithm of the float-type expression x.

PI: FLOAT
Use Pi in mathematical calculations that require pi, the ratio of a circle's circumference to its diameter,
approximated as 3.1415926535897932385.

POWER(BASE, EXPONENT: FLOAT): FLOAT
Raises Base to any power. For fractional exponents Base must be greater than 0.

ROUND(X: FLOAT): INTEGER
Rounds a float-type value to an integer-type value. x is a float-type expression. Round(x: Float) returns
an integer value of x rounded to the nearest whole number. If x is exactly halfway between two whole
numbers, the result is the number with the greatest absolute magnitude (i.e. away from zero).
v2 = round(2.5) will make v2 have the value 3.

SIN(X: FLOAT): FLOAT
Returns the sine of the argument. x is a float-type expression. Sin(x: Float) returns the sine of the
angle x in radians.

.

55

SQR(X: FLOAT): FLOAT
Returns the square of the argument. x is a floating-point expression. The result, of the same type as x,
is the square of x, or x*x.

SQRT(X: FLOAT): FLOAT
x is a floating-point expression. The result is the square root of x.

STRING(X): STRING
Converts x to a string. If FIELD1 is an integer field with the value 41 then ”sb”+String(FIELD1) equals
”sb41”

See function INTEGER for conversion of string to numerical value.

TRUNC(X: FLOAT):INTEGER
Truncates a float value to an integer value. x is a float expression. Trunc(x: Float) returns an integer
value that is the value of x rounded toward zero.
v2 = trunc(2.5) will make v2 have the value 2, see also Round() above.

.

56

String functions

UPPER(S: STRING): STRING
Returns a string containing the same text as S, but with all characters converted to upper case. The
conversion affects all characters included in the ANSI character set.

LOWER(S: STRING): STRING
Returns a string with the same text as the string passed in S, but with all letters converted to
lowercase. The conversion affects all characters included in the ANSI character set.

COPY(S: STRING; INDEX, COUNT: INTEGER): STRING
Returns a substring of a string. S is a string-type expression. Index and Count are integer-type
expressions. Copy(S: string; Index, Count: Integer) returns a string containing Count characters
starting at position Index in the string S. If Index is larger than the length of S, Copy(S: string; Index,
Count: Integer) returns an empty string. If Count specifies more characters than are available, the
only the characters from Index to the end of S are returned.
e.g. SHORT = copy(”My short sentence”,4,5) means that SHORT has the value ”short”

POS(SUBSTR: STRING; S: STRING): INTEGER
Searches for a substring, Substr, in a string, S. Substr and S are string expressions. Pos(Substr:
string; S: string) searches for Substr within S and returns an integer value that is the index of the first
character of Substr within S. Pos(Substr: string; S: string) ignores case-insensitive matches. If
Substr is not found, Pos(Substr: string; S: string) returns zero.

e.g. position = pos(”short”, ”My short sentence”) means that position gets the value 4.

LENGTH(S: STRING): INTEGER
Returns the number of characters actually used in the string S.
e.g. length(”This string”) is 11.
STRING(X): STRING
Converts x to a string. If FIELD1 is an integer field with the value 41 then ”sb”+String(FIELD1) equals
”sb41”

See function integer for conversion from a string to a number.

SOUNDEX(S: STRING): STRING
The result of the function is the Soundex code of the string S. For an explanation of Soundex, see
Soundex Fields.

.

57

Date and time functions

EpiData handles dates as float-type numbers counting the number of days since 31/12/1899. Handling
the dates as numbers makes it possible to use dates in calculations. E.g. to calculate the number of
days between two dates, simply subtract one date from the other.

EpiData does not support time fields, but two functions (Time2Num and Num2Time) can be used to
make floating point fields act like time fields in calculations.

Read more about how to do calculations with date and time below the list of functions.

DATE(D:INTEGER,M:INTEGER,Y:INTEGER): DATE
Takes three numbers as parameters: the day, month and year and returns the date that the three
parameters make. This functions returns a date or an integer depending on the type of field the result
is assigned to. Please see below.

DAY(D: DATE): INTEGER
Returns the day (i.e. a number between 1 and 31) of the date D.

DAYOFWEEK(D: DATE):INTEGER
Returns a number representing the weekday of the specified date. Example:
DayOfWeek("22/02/2001")=4 (a Thursday). Note that Monday=1, Sunday=7.

MONTH(D: DATE): INTEGER
Returns the month (i.e. the number 1-12) of the date D.

NOW: DATE
Returns the current date as an integer and the current time as the fractional part. If a data entry form
has two fields, D1 defined as <dd/mm/yyyy> and T1 defined as ##.##, then these assignments can be
made: LET D1=Now and LET T1=Num2Time(Now).

NUM2TIME(D: DATE): FLOAT
Converts a number between 0 and 1 representing a fraction of a day to a floating point number ##.##
where the integer part is the hours (from 0 to 24) and the fractional part is the minutes (.00 to .59).

TIME2NUM(F: FLOAT): DATE
If F is a floating point number representing a time between 0.00 and 23.59 then Time2Num returns the
time converted to a number between 0 and 1 representing a fraction of a day.

TODAY: DATE
Returns today's date. This functions returns a date or an integer depending on the type of field the
result is assigned to.

WEEKNUM(D: DATE):INTEGER
Returns the week number of the specified date. Example: WeekNum("22/02/2001")=8.

YEAR(D: DATE): INTEGER
Returns the year (in 4 digits) of the date D.

ABOUT DATES

EpiData works internally with dates as date numbers, counting the number of days since 31st
December 1899, which has the day number 1. The date 15th October 2000 has, for example, the day
number 36814.

The advantage of day numbers is that it makes it easy to perform calculations with dates, e.g. adding 7
days to date or counting the number of days from a specific date to today.

When dates (i.e. date numbers) are assigned to a date type field (by using a LET command in a check
file) then a proper date format will be used. When dates are assigned to a integer field then the date
number will be shown.

.

58

Date constants can be defined in two ways: either by "14/09/2000" or by Date(14,9,2000) which both
will produce the date 14th September 2000. If "dd/mm/yyyy" is used then the string is only interpreted
as a date if it is 10 characters in length and if the string consists of a valid European format date.

Examples:

Imagine a data file with two fields: D1 is a <dd/mm/yyyy> field and INT1 is a 5-digit integer field
(#####).

LET INT1=D1

If the user has entered the date 15/10/2000 in D1
then LET INT1=D1 will fill the field INT1 with the date
number 36814.

LET D1=INT1 If the user has entered the number 36814 in INT1
then LET D1=INT1 will fill the field D1 with
15/10/2000.

LET D1=D1+7 Adds one week to the date entered in D1 and
formats the result as a date (dd/mm/yyyy).

LET INT1=D1+7 Adds one week to the date entered in D1 and
formats the result as a date number (e.g. 36821).

LET INT1=Today - Date(1,10,2000) Calculates the number of days from 1st Oct. 2000 to
today's date and assigns the result to INT1.

LET INT1=(ROUND(INT((TODAY-D1)/365.25)) Calculates the age of a person whose date of birth
was entered in D1. The age is defined on the date of
the calculation (TODAY). Round is needed to
convert the result of the calculation from a real
number to an integer number.

LET D1=Date(1,INT1,2000) Assigns the date 01/04/2000 to D1 if the user
entered 4 in INT1.

LET D1="01/04/2000"+5 Assigns the date 06/04/2000 to D1.

.

59

HOW TO CALCULATE AGE ON A GIVEN SPECIFIC DATE ?
One wishes to calculate the AGE as the difference between a given data, e.g. June 6th 2001 and date
of birth which was entered in the field DOB. How to do that ? Just specify this formulae:

let age = round(int(("01/06/1001"-DOB)/365.25))

This might seem a little complicated, but by taking it apart it is easier to understand:
1. Take the difference in days btw. june 1st and DOB: "01/06/2001" - DOB
2. Convert that difference into an integer: int("01/06/2001" - DOB)
2. Convert the result to number of years: round(int("01/06/2001" - DOB) /365.25)

round is needed since epidata cannot store a real into an integer and AGE was a ”### field”

For persons used to US specification of dates this is confusing since ”01/06/2001” indicates 6th of
january. We can only say “sorry” if you find that odd. EpiData is made in Europe and here dates are
written in the notation dd/mm/yyyy, not the US way mm/dd/yyyy.

ABOUT TIME

EpiData does not support time fields, but two functions (Time2Num and Num2Time) may be used to
make floating point fields act like time fields. Time2Num converts a floating point number ##.##, which
must be bigger than or equal to 0.00 and smaller than 24.00, to a number between 0 and 1
representing a fraction of a day. 12.00 noon is converted to 0.5, 18.00 is converted to the value 0.75.
Please notice that a 24-hour clock is used. This method makes it possible to add and subtract times.

Dates and time values can be added since the integer part of a date/time number represents the date
and the fractional part represents the time. The date functions that take a date as a parameter are not
affected by the date having a fractional part (it is ignored). The Num2Time function, which converts a
time value between 0 and 1 to a floating point number between 0.00 and 23.59 is not affected if the
parameter is larger than 1. Only the fractional part is used for the conversion.

Example (see the example files DateTime.rec, -.qes and -.chk in the Sample directory in the EpiData
program directory)::

Make a datafile from this QES-file:

Procedure {start dat}e <dd/mm/yyyy>
Procedure {start tim}e ##.## (enter hh.mm as 24-hour clock)

Procedure {end date} <dd/mm/yyyy>
Procedure {end time} ##.## (enter hh.mm as 24-hour clock)

Total time used in procedure was
{Days}: ###
{Hours}/{Min}utes: ##.##

{Sec}onds {used} to fill out this record: ####

The curly brackets show the field names in the datafile.

Make a CHK-file like this:

BEFORE FILE
DEFINE varEntryBegun ########.#####
DEFINE varStartTime ########.#####
DEFINE varEndTime ########.#####

END

BEFORE RECORD
varEntryBegun=Now
ENDDATE=varEntryBegun
ENDTIME=NUM2TIME(varEntryBegun)

END

STARTTIM
RANGE 0 23.59

END

.

60

ENDTIM
RANGE 0 23.59
AFTER ENTRY

varStartTime=STARTDAT+TIME2NUM(STARTTIM)
varEndTime=ENDDATE+TIME2NUM(ENDTIME)
DAYS=INT(varEndTime-varStartTime)
HOURSMIN=NUM2TIME(varEndTime-varStartTime)

END
END

DAYS
NOENTER

END

HOURSMIN
NOENTER

END

SECUSED
BEFORE ENTRY

IF SECUSED = . THEN
SECUSED=(Now-varEntryBegun)*86400
* 86400 seconds equals 24 hours

ENDIF
END

END

Other functions

ISBLANK(FIELD NAME): BOOLEAN
Returns True if the field, whose name is given as parameter, is blank, i.e. no data is entered.
IsBlank(field name) returns False if the field contains data.

Instead of using IsBlank(field name), a period (dot) can be used to represent a missing value. These
two examples give the same result:

IF IsBlank(v1) THEN ...
IF v1 = . THEN ...

RECORDCOUNT: INTEGER
Returns the current number of saved records. If the current record is a new record that record is NOT
included.

RECORDNUMBER: INTEGER
Returns the record number of the current record. If the current record is a new record the value -1 is
returned.

.

61

Enter Data

Choose this function and select an existing data file to begin entry of data or to edit existing data. If
validation rules (checks) are found in connection to the data file these will be applied.

When all data in a record are entered the user will be asked if the record is to be saved.

To close the data file select File / Close Form or click the close control of the data form window.

Navigation between fields, Navigation between records, navigation between related files,
Finding records and finding fields is explained further here.

Navigation between fields

Warning: Be careful if you use the mouse during entry of data. Controls defined in the check file are
NOT applied when moving from one field to another by clicking the mouse. See explanation in the
section on keyboard short-cuts.

Select the next field by:

pressing [Enter]
pressing [Tab]
pressing [Down-arrow] key
clicking on the destination field with the mouse

If the full width of a entry field is used then the next field is automatically selected unless CONFIRM is
used as a program parameter or check command.

Select the previous field by:

pressing [Shift] + [Tab]
pressing [Up-arrow] key

Select the first field in the data form by pressing [Ctrl] + [Home].
Select the last field by pressing [Ctrl] + [End].

Navigation between records

Navigation buttons are shown in the bottom of the data form window. All the functions of these buttons
are displayed on the Goto menu.

The navigation panel shown above shows that the current record is record number 2 out of a total of 2
records. DEL signifies that the current record is marked for deletion.

The buttons are:

 Goto the first record
 Goto the previous record ([Ctrl] + [PgUp] or [F7] may be used instead)
 Goto the next record ([Ctrl] + [PgDn] or [F8] may be used instead)
 Goto the last record
 Enter new record ([Ctrl] + [N] may be used instead)
 Delete a record or undelete a deleted record ([Shift] + [Delete] may be used instead)

NOTE: records are only marked as deleted when [Shift] + [Delete] is used. The record still exists in the
data file and can later be undeleted. Use the Pack File function found in the Tools menu to
permanently remove all records marked as deleted.

.

62

Navigation between related files

When a system of relational datafiles (i.e. datafiles with relate commands) is opened the "relatetree" is
shown in the left side of the dataentry form. The relatetree shows in a treelike structure which datafiles
are related to each-other. The relatetree is usefull for getting a overview of the relationsships between
the datafiles and it helps navigation between the datafiles by indicating the datafile currently on screen
(marked by) and the datafile currently active, i.e. open for input (marked by).

Click on the name of a relatefile to view the file's contents. Please notice that the choosen datafile will
be shown in read-only mode, no data can be changed. You can only change relatelevel by passing
through the field that contains the relevant RELATE command. To get help finding the relevant field
use Find field or Find relate field (see below).

Right-click on a datafile in the relatetree to get extended information on the relations.

The relatetree window can be closed by clicking the X-icon in it's upper right corner, by pressing F11 or
by selecting the menuitem Window | Hide relate tree. To show the relatetree again, press F11 or select
the menuitem Window | Show relate tree.

The relatetree can be moved to the left side of the data entry form by dragging in the relatetree
window's top bar. If the relatetree window is dropped outside the far left or far right side of the EpiData
window then the relatetree will change to an ordinary window which can be placed anywhere on the
screen.

Finding records

If the number of the record is known then the record can be shown by using Goto Record in the Goto
menu or by pressing [Ctrl] + [G].

If the number is unknown then use Find Record on the Goto menu or press [Ctrl] + [F]. A search
window will be opened. The search will be performed on the current field by default (i.e. the field which
had the focus when Find Record was selected), but any other field can be searched on ¤¤. This
includes fields that cannot receive the focus (e.g. IDNUM-fields).

A search can be performed on up to ten different fields with different parameter: equals (specify no
parameter or specify =), not equal to (<>), greather than (>), less than (<), begins with (xxxx*), ends
with (*xxxx) or contains (*abcd*). Options are case sensitivity, whole words / parts of words and to
ignore deleted records.

Press [F3] or select Find Again to repeat the search with the same search parameters.

A search can be aborted by pressing [Esc] or by clicking Cancel in the progress window shown during
the search.

Searching in KEY fields is much faster than searching in other fields, but only if all fields that are
searched are KEY fields. If you know that you will need to locate records using particular variables then
you should consider making these variables KEY fields.

Press the Reset button in the search option window to clear all search parameters. This will reduce the
search to the current field.

Finding fields and relatefields

To find a specific data entry field press F4 or select the menuitem Goto | Find field which brings up a
list of the fields of the current datafile. Enter part of the field name untill the name is highlighted, then
press enter or click on the fieldname to jump to the field.

Press Shift-F4 or select Goto | Find relate field if a list containing only fields with a RELATE command
is to be shown. Pressing F4 twice has the same effect.

.

63

Filter

During data entry it can be useful to limit which records are shown. This may be done by using the filter
function found in the filter menu during data entry.

Set a filter
By placing the cursor in the field that is to be used as filter. The field must be a KEY or KEY UNIQUE
field to act as a filter. Select Filter and Define Filter. Enter the filter value. Now only records where
the selected field has the entered filter value are shown. If you go to the next record, the next record
that has the same filter value is shown. Find returns individual records whereas Filter returns a
subset of records.

Deactivate a filter
By selecting Filter and Deactivate Filter.

During a RELATE a filter function using the value of the RELATE field is automatically activated.

.

64

Append / Merge Data files

Is used to combine two data files into a third (new) data file.

Append is used for combining two data files with exactly or nearly the same structure. Files are joined
end-to-end.

Merge is used for combining two data files with different structure that share 1-3 common fields ("ID-
fields" or key-fields). An example could be one data file that is entered on basis of paper-
questionnaires and another data file that is imported from another database with (e.g.) clinical data for
the same persons. Both data files will contain a code or ID-number identifying the individual person.
Files are joined side-to-side.

Append

Select the function Append / Merge from the Data menu. Enter the name of the two data files that are
to be appended. Click OK.

A summary of the two selected data files is shown. Enter the name of the new data file that will contain
the result of the append operation. The two selected data files will not be changed during the operation.

Append can be performed in two different ways:

The result data file will have the same structure (same fields) as Data file A. Only data in Data file B
contained in fields that exist in Data file A will be appended. Data in fields that do not exist in Data file A
will be ignored.

The result data file will have a structure that is a combination of all the fields of Data file A and all the
fields of Data file B.

NOTE: Data file A is considered the ‘master’ data file. If a field exists with the same name in Data file A
and Data file B then the same field in the result data file will have the same field type as the field in
Data file A.

NOTE: If either Data file A or Data file B has a check file Append/Merge will combine the check files
into one check file for the combined file. It is up to the user to control and confirm proper action of the
various check commands in the combined file. Pay particular attention to labels jumps, goto
statements and if ... then endif structures.

After running append a summary of the result data file is shown. The summary is also added to the
data entry notes file of the result data file.

Merge Data files

Select the function Append / Merge from the Data menu. Enter the name of the two data files that are
to be merged. Click OK.

A summary of the two selected data files is shown. Enter the name of the new data file that will contain
the result of the merge operation. The two selected data files will not be changed during the operation.

Merge requires one or more key fields to be present in both files in order to make it possible to match
a record from Data file A to a record in Data file B. Up to three key fields can be selected. The key
fields do not have to be marked as KEY or KEY UNIQUE fields in the check file, but they must exist in
both data files.

When the Merge page is selected, a list of common fields from Data file A and Data file B is shown. If
no common fields exist, then merge cannot be run. Select from 1 to 3 fields in the list of common
fields. The combined key fields must be unique in both data files.

Two types of merge can be done:

Merge only records where the key (combined key fields) matches in both Data file A and Data file B.

.

65

Merge all records of both data files. This option may result in many fields with missing values since
some records from Data file B may have no matching record in Data file A.

In order to do a merge one or more common fields must exist

NOTE: If either Data file A or Data file B has a check file Append/Merge will combine the check files
into one check file for the combined file. It is up to the user to control and confirm proper action of the
various check commands in the combined file. Pay particular attention to labels, jumps, goto
statements and if ... then endif structures.

After running merge a summary of the result data file is shown. The summary is also added to the data
entry notes file of the result data file.

.

66

Document data file

This function provides information on a selected data file and its entry fields.

Data file information includes:

Data file name
File size
Date of last revision
Number of fields
Number of records
Are checks applied?

For each entry field in the file the following information is given:

Name of entry field
The variable label of the field
Field type
Width of field
List of applied checks

The information is shown in an editor window where it can be edited, saved or printed.

Data entry notes

During data entry in EpiData of a questionnaire it is often useful to make notes (e.g. if a difficult to read
word is written on a questionnaire). The Data Entry Notes function can be used for making short notes
either during data entry or when no data file is open.

During data entry the notes can be accessed by pressing [F8]. If no note file exists for the current data
file, a new file will be created. Current time and date are automatically inserted in the notes.

Data Entry Notes can also be accessed from the Document menu.

Data Entry Notes will be included if the function Backup Data file is selected.

The data entry notes file is also used to store information of append, merge and import operations
making it possible to document the changes made to a data file.

During data entry, notes may also be added to the notes file using the WRITENOTE check command.

Data file label

When a data file is created a data file label can be entered as a short text (50 characters). The data
file label is saved as part of the data file (.REC file).

The data file label is shown as part of Document data file and is exported when data files are
exported to Stata, Sas or SPSS

The data file label can be changed by using Tools / Edit File Label.

.

67

List data
List data can be used as part of the documentation of entered data by using this function to produce a
print of all or part of the data in entered records.

Select the function Document / List Data.

An Open File dialog appears where the name of the data file to list can be entered.

A new dialog box appears where the options of List Data can be set.

The options are:

Select records
List all records or only a range of records (e.g. from record 100 to record 199)
Skip deleted records
Use a record filter. Enter a Boolean expression, e.g. ID>1000 or (V10 <> .) AND (V100=20).
Only records where the Boolean expression evaluates to TRUE are shown.

Select fields
Check or uncheck the fields of the data file to select which fields are shown in the list. Click All to
select all fields. Click None to uncheck all fields.

Options
Dimensions of list. The line width of the list of data can be changed to insure a nice printed output.
The number of columns in the list can be changed. If either the line width or the number of columns are
changed, a new calculation of the width of the data columns are shown. Data wider than the data
column's width are truncated (indicated by ‘—‘ in the output).
Use index as sort order. If this option is set then the data is listed by an order decided by the KEY-
field(s) defined in the check file. Only when a key is defined in the check file can you use that key for
listing.

Write value labels instead of data. If a field has value labels defined (by using COMMENT LEGAL in
the check file) the labels instead of the values will be shown in the list if this option is checked.

The list is shown in EpiData's editor.

Codebook – basic tabulation
The Codebook gives key information plus basic descriptive statistics on the data found in the data file
including the number of records, number of deleted records, variable labels, field types, selected
check commands and number of missing values (= blank fields). Summary statistics are also displayed
depending on the field type. Codebook is a simple form of frequencies for all or selected variables.

The Codebook function is found in the Document menu. Select the file to make a codebook for.
Select the fields to make a codebook for (default is all fields). It is also possible to make a codebook on
a selected range of records, which will effect the calculated means, ranges, etc.

The options page allows you to select the level of default about checks in the check file to be shown in
the Codebook.

The resulting Codebook is shown in the editor.

.

68

Logical Consistency Check
Consistency Check is a function used for checking the consistency of all data in a data file in one run
without browsing the data file manually. It provides ’batch’ checking as opposed to the interactive (i.e.
as data is entered) checking that is also offered by check commands. A number of consistency
checks may be defined in the check file or another text file. The function will show a list of all records in
the data file that fail one of the specified consistency checks.

To make a logical consistency check a CONSISTENCYBLOCK must be entered either in the check
file attached to the data file or in another text file. The CONSISTENCYBLOCK is a block command
ending with the word END. Any number of consistency checks can be defined in the block.

Run Consistency Checks from the Document menu. Enter the name of the data file to check and the
name of file that contains the CONSISTENCYBLOCK (can be the check file or any other file). Different
data files may share the same CONSISTENCYBLOCK file. Click OK, wait for the checks to finish, and
examine the resulting report.

The syntax of a check is

CHECK "Text explaining the purpose of the check" logical / Boolean expression

The logical / Boolean expression is an example of good data.

An example:

CONSISTENCYBLOCK

REPORT ID1
CHECK "V1 is missing or unusually big" ((V1<>.) AND (V1<112))
CHECK "ID-numbers are not identical" ID1=ID2
CHECK "Mother too young" (AGE<15) AND (HASCHILD="N")
CHECK "Ranges" CHECKRANGE
CHECK "Legal" CHECKLEGAL
CHECK "MustEnter" CHECKMUSTENTER
CHECK "Range and legal" CHECKRANGELEGAL

END

The command REPORT informs the function of how to report a record that fails a check. If no
REPORT command is found in the CONSISTENCYBLOCK then the record number of the failing
record is reported. In this example the value of the field ID1 will be reported for all failing records.

The first check has the caption "V1 is missing or unusually big" and it will report records where V1 is
either missing or bigger than 112. The caption is irrelevant for the function in itself. It is used for your
own information and for easier reading of the resulting list of failing records.

The syntax of the logical expression is the same as IF expression and the same operators and
functions can be used. The expression must express what is expected in a "good" record since the
resulting report shows the records that fail the test (i.e. where any of the logical expressions evaluate to
FALSE).

Three different predefined checks may also be used:

CHECKRANGE checks if the values of all the fields are within the RANGE defined in the check file. A
field's value will only result in a failing record if the value is not missing and if a RANGE for the field is
defined in the check file.

CHECKLEGAL checks if the values of all the fields are legal according to the LEGAL and COMMENT
LEGAL definitions in the check file. Fields with missing values are ignored.

CHECKRANGELEGAL checks if the values of all the fields are legal according to the LEGAL,
COMMENT LEGAL and RANGE definitions in the check file. Fields with missing values are ignored.

CHECKMUSTENTER reports records that have fields with missing values that have MUSTENTER
defined in the check file.

.

69

Double entry and validation

To ensure a high quality of data, often it is a good strategy to have two different persons enter the
same data. In EpiData this can be done in two different ways: either by entering the same data in two
separate data files, which later can be compared or by entering in double entry mode where the new
data immediately are compared with the original data.

VALIDATE DUPLICATE DATA FILES

Two different persons enter the same data in two separate data files. When all data has been entered
the two data files may be compared using the function Validate Duplicate Files found in the
Document menu in the main screen (when all files are closed or when only editor files are shown).

To prepare double entry the function Copy Structure found in the Tools menu may be used to copy
the structure (not the data) of a data file to a new data file. Copy Structure has the option to leave out
text fields since these are seldom entered twice.

Select Validate Files when all data has been entered into both files. Select the names of the two files.
After that a dialog is shown with the options of the validation process.

Select key fields

In order to compare two data files one or more KEY fields should be selected. The KEY fields selected
are used to match records in the two files. The list of selectable key fields show only the fields that are
common to both data files. Fields that are marked with KEY in the check file have a key-symbol .
The key symbol is shown only as information. It is not necessary that the KEY fields selected for
validation are KEY fields in the check file.

If no KEY fields are selected then the two data files are compared on a record-by-record basis (i.e.
record 1 in data file 1 is compared to record 1 in data file 2, and so on). Data in the two files must
therefore be entered in the same order if no key fields are selected.

Options:

Ignore deleted records
Records marked as deleted are skipped during the validation process

Ignore text fields
Fields of the type Text and Uppercase text are ignored during the validation process

Ignore letter case in text fields
If set then "Smith" is considered equal to "sMiTh"

Report differences in field types
If set then the validation report will include information about fields in the two data files have the same
field name but have different field types.

Ignore missing records in data file 2
Set this option to avoid messages that records found in data file 1 are not found in data file 2. This is
useful if double entry is only made on a sample of the original data file. Select the original (full) data file
as data file 1 and the extract as data file 2, and set the option Ignore missing records in data file 2.

Click OK to run the validation. The two data files are compared and a validation report is shown.

DOUBLE ENTRY

Double entry is a procedure where one person has entered data in a data file and another person
enteres the same data in EpiData's double entry mode where the new data immediately are compared
with the original data. During the second round of data entry the user will receive messages if the new
data differ from the orginal data.

Double entry is done in two steps. First double entry is prepared, second the data are reentered.

.

70

Prepare for double entry verification

In the Tools menu select Prepare Double Entry Verification. Select the data file with the original data.
Select a name for the data file, where the second round of data are to be saved.

Options can be changed now: choose if textfields are to be ignore during double entry (only data in
numeric fields will be compared with original data).

Choose if records are to be compare by recordnumber or by a keyfield. If the option "Match records by
field" is unchecked, then records are compared by recordnumber. If the option is checked, the user will
be asked to point out which data field should act as the keyfield. The keyfield must contain unique
data, i.e. a ID-number.

Click OK and read the message stating that double entry varification is now prepared.

Re-enter data

Select Enter Data and choose the double entry data file that was created when double entry verification
was prepared (this file will be default is Enter Data is selected directly following prepare for double
entry). The user will see a warning stating that EpiData is in double entry verification mode.

Begin entering the data. If the data entered differ from the original data file a warning is shown, given
the chose of accepting the new value, the original value or editing the input.

As during normal data entry, the double entry verification can be interupted by closing the data file and
resumed at a later time.

Count records by field

Count Records is used to document how many times a specific value of a specified field occurs in a
data file. Several data files can be checked in one run of this function.

An example of use of this function:

A study of patients uses several data files. One data file contains the ID-number and name of all
patients included in the study. Another data file could contain basic data concerning the patients (e.g.
age, height, weight, etc) including their ID-number. A third data file could contain data regarding the
patient's consultations.

If all data are entered correctly then the first data file will have the same number of records as the
number of patients included in the project. A specific ID-number will occur in one - and only one -
record. The second data file ("basic data") should have one record per patient meaning that all the ID-
numbers found in the first data file should occur in one (and only one) record. The third data file
depends on the study. In this example all patients should have at least one consultation but they can
have more than one. This means that a specific ID-number must exist in at least one record, but can
exist in more than one record.

The function Count Records makes it easy to check these conditions. Run the function specifying all
three data files and specify that the field ID (which is found in all three data files) should be the field to
evaluate. The result of the operation is a list containing all the different values found in all three data
files. Next to each value is the count of records where the field ID has this specific value.

How to operate the Count Records dialog box

The first line in dialog is where the names of the data files to be evaluated are entered. Several file
names can be entered at once separated by space. If a file name contains the character space then
imbed the file name in double quotes ("my own data file.rec"). It is not necessary to specify the file
extension (.REC). Click on Add to list to put the entered files on the list of data files to evaluate.

To remove a file from list, highlight the file or files and click on Remove from list.

.

71

When new files are added or removed from the list, the list of fields to evaluate is updated. The list of
fields shows all fields that are common to the selected data files. If no fields are shown in the fields list
then no fields are common to all the files and the function cannot be used.

Highlight one field in the list of fields making it the field to evaluate. Click OK to run the function.

Example of output of Count Records by Field:

Two datafiles, FileA.rec and FileB.rec was entered on the list of files. The field ID was highlighted
making it the field to evaluate. The output of Count Records by Field is:

File 1 = d:\datafiles\FileA.rec
File 2 = d:\datafiles\FileB.rec

15 different values for ID found

Files
ID 1 2

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 .
8 1 .
9 1 .
10 1 .
11 . 1
12 . 2
13 . 1
14 . 1
15 . 1

The list shows that 15 different values for ID was found in the two datafiles. The values 1-6 was found
in one record in both of the datafiles. Values 7-10 was only found in FileA.rec and each of them in only
one record. The values 11-15 exists only in datafile 2 (FileB.rec). 11, 13, 14 and 15 is found in only one
record, but the value 12 exists in two different records.

.

72

Export data

Be carefull if you are trying to export old time data where years of dates are only two digits, not four
digits including century. If you export such data you should convert to four digit years first. An
explanation of this is given on the website of EpiData.

The Export data function is found in the Data in/out menu and includes:

backup of data
export of data to text file format
export to dBase III format
export to Excel format
export to SPSS format
export to Stata format
export to SAS format
export to new EpiData data file

Backup of data

Select a data file to backup and select a destination directory. Press OK to begin the backup. This
functions creates a copy of the selected data file, a .QES file of the same name, a check file of the
same name and a data entry notes file of the same name in the selected destination directory.

Note that this can be done with the check file command BACKUP as well.

Another way of making a backup is to use the Zip files command found in the Tools menu. Use Zip
Files to compress all files in a directory and save in a standard zip file (which also can be handled by
e.g. WinZip). Zip Files can also be used to encrypt the zip file and thereby make certain that no one
can read the backup of the data files.

Use the menuitem Unzip files in the Tools menu to unzip and/or decrypt files.

Export to text file

Exports a data file to a standard windows text file with one record per line. Fields may be separated by
an optional specified character.

Select the data file to export and a name of the destination file to be created. The extension of the
destination file must be .TXT.

Options are:

Select records
Export all records or only a range of records (e.g. from record 100 to record 199)
Skip deleted records
Use a record filter. Enter a Boolean expression, e.g. ID>1000 or (V10 <> .) AND (V100=20).
Only records where the Boolean expression evaluates to TRUE are exported.

Select fields
Check or uncheck the fields of the data file to select which data is to be exported. Click All to select all
fields. Click None to uncheck all fields.

Use text qualifier
Select this option to enclose all non-numeric fields in double quotes

Field separator
Selects the character (e.g. comma) that separates the fields.

Use Index as sort order
Records are sorted in the order of the index field(s) instead of the recordnumber order.

.

73

Export to dBase III format

Exports a data file to a dBase III file. This file format is widely supported by database, spreadsheet and
statistical programs.

Fields are exported as

EpiData field type dBase III field type
Integer, IDNUM N - Fixed number with 0 digits after the decimal

separator
Floating point numbers N - Fixed numbers
Text, upper-case text, Soundex, encrypted field C - Characters
Boolean L - Logical (Y=true, N=false)
Dates (dmy and mdy), today’s date (dmy and mdy) D - Date in the format YYYYMMDD

NOTE: The dBase format limits the number of fields to 128 fields per file.

Options are:

Select records
Export all records or only a range of records (e.g. from record 100 to record 199)
Skip deleted records
Use a record filter. Enter a Boolean expression, e.g. ID>1000 or (V10 <> .) AND (V100=20).
Only records where the Boolean expression evaluates to TRUE are exported.

Select fields
Check or uncheck the fields of the data file to select which data is to be exported. Click All to select all
fields. Click None to uncheck all fields.

Use Index as sort order
Records are sorted in the order of the index field(s) instead of the recordnumber order.

Export to Excel

Exports a data file to an Excel file. The version of Excel used is 2.1 because of its relative simplicity.
These files can be read by all later versions of Excel and many other programs.

Fields are exported as

EpiData field type Excel cell type
Integer, IDNUM, Floating point numbers Number
Text, upper-case text, Soundex, encrypted field Label
Boolean Logical (1=true, 0=false)
Dates (dmy and mdy), today’s date (dmy and mdy) Serial date number (formatted as a date)

NOTE: Excel spreadsheets have limits on the number of rows and columns they can handle. The
limits are different in the different versions of Excel, so please examine the exported file closely to
make sure all data are exported.

Options are:

Select records
Export all records or only a range of records (e.g. from record 100 to record 199)
Skip deleted records
Use a record filter. Enter a Boolean expression, e.g. ID>1000 or (V10 <> .) AND (V100=20).
Only records where the Boolean expression evaluates to TRUE are exported.

Select fields
Check or uncheck the fields of the data file to select which data is to be exported. Click All to select all
fields. Click None to uncheck all fields.

.

74

Use Index as sort order
Records are sorted in the order of the index field(s) instead of the recordnumber order.

Export to SPSS

Exports a data file to an SPSS command file (*.SPS) and a raw data file (*.TXT). Run the command
file in SPSS to load the data into SPSS and use the SPSS command SAVE to create a genuine SPSS
data file.

Comment legals found in the exported data file are used in the command file as value label definitions.

Options are:

Select records
Export all records or only a range of records (e.g. from record 100 to record 199)
Skip deleted records
Use a record filter. Enter a Boolean expression, e.g. ID>1000 or (V10 <> .) AND (V100=20).
Only records where the Boolean expression evaluates to TRUE are exported.

Select fields
Check or uncheck the fields of the data file to select which data is to be exported. Click All to select all
fields. Click None to uncheck all fields.

Use Index as sort order
Records are sorted in the order of the index field(s) instead of the recordnumber order.

Note that the term “RECORDS=” in the generated SPSS .sps file has a different meaning than in
EpiData. In EpiData records is the number of observations, whereas in SPSS it is the number of lines
needed to write all the fields for one person.

Export to SAS

Exports a data file to a SAS command file (*.SAS) and a raw data file (*.TXT). Submit the command
file in SAS to load the data into SAS.

Comment legals found in the exported data file are used in the command file as value label definitions.

Options are:

Select records
Export all records or only a range of records (e.g. from record 100 to record 199)
Skip deleted records
Use a record filter. Enter a Boolean expression, e.g. ID>1000 or (V10 <> .) AND (V100=20).
Only records where the Boolean expression evaluates to TRUE are exported.

Select fields
Check or uncheck the fields of the data file to select which data is to be exported. Click All to select all
fields. Click None to uncheck all fields.

Use Index as sort order
Records are sorted in the order of the index field(s) instead of the recordnumber order.

Export to Stata

Exports a data file to a Stata file version 4, version 5 (same format as version 4), version 6, 7 or
version 8. Note that the case setting in options for creation of data files is used when exporting. If you
want small letter variable names in Stata set the option to small.

The data file format for Stata includes information on data file label, variable labels and value labels.
Note that Stata version 4/5 only allows short labels (the value labels may be up to 8 characters). If
labels are too long to fit the Stata data file structure they will be truncated.

.

75

EpiData field type Stata variable type
Integer
- Length<3 Byte
- Length<5 Integer
- Length<10 Long integer
- Length>=10 Double real
Floating point numbers Double real
Boolean Byte (0=false, 1=true)
Dates (dmy and mdy), today’s date (dmy and mdy) Serial date number (formatted as a date using %d)
Text, upper-case text, encrypted field String
Soundex String (length=5)

Options are:

Select records
Export all records or only a range of records (e.g. from record 100 to record 199)
Skip deleted records
Use record filter. Enter a Boolean expression, e.g. ID>1000 or (V10 <> .) AND (V100=20).
Only records where the Boolean expression evaluates to TRUE are exported.

Select fields
Check or uncheck the fields of the data file to select which data is to be exported. Click All to select all
fields. Click None to uncheck all fields.

Select Stata version
Selects which Stata version the *.DTA file is written for.

Select lettecase for fieldnames
Fieldnames (or variablenames) are casesensitive in Stata. Use this option to set the letter case of
variables in the exported Stata file.

Use Index as sort order
Records are sorted in the order of the index field(s) instead of the recordnumber order.

Export to new EpiData data file

Exports a data file to a new EpiData data file. The advantage of this function is that it is easy to make
an extract of a data file by exporting fewer records than the original data file or by exporting fewer
fields.

Options are:

Select records
Export all records or only a range of records (e.g. from record 100 to record 199)
Skip deleted records
Use a record filter. Enter a Boolean expression, e.g. ID>1000 or (V10 <> .) AND (V100=20).
Only records where the Boolean expression evaluates to TRUE are exported.

Select fields
Check or uncheck the fields of the data file to select which data is to be exported. Click All to select all
fields. Click None to uncheck all fields.

Use Index as sort order
Records are sorted in the order of the index field(s) instead of the recordnumber order.

You can use this if you want to analyse data in Epi Info v6 and the number of fields in your REC file is
too large.

.

76

Import data

The import function is found in the Data menu and includes:

Import of text filesImport of dBase filesImport of Stata files
Import text files

EpiData can import data stored in text files in different formats: delimited (with comma, semicolon,
TAB, etc.) or fixed, with text qualifiers and different date formats.

To import data from a text file you must first create a .QES file that acts as a template for the import.
The .QES file is also used to give the variables in the text file field names. The fields are named from
the .QES file. If the text file contains field names in the first line the option Ignore first line in text file
must be checked. The .QES file also defines to which field types the variables in the text file are
assigned.

If the .QES file contains fewer fields than the text file has variables, then the surplus variables in the
text file are ignored. If the .QES file contains more fields than the text file, then the surplus fields are
set to missing.

If the text file contains dates then make sure to set the date format options correctly.

Options are:

Delimited format. The variables in the text file is separated by a comma, a semicolon, a TAB
character, etc. Remember to set the Delimiter option correctly.

Enclosure of text/variables. Defines if all variables, no variables, or only text variables in the text file
are enclosed in double quotes (”).

Fixed format. The data in the text file are stored without a delimiter between the variables. If this
option is used then make sure that the width of the entry fields defined in the .QES file is exactly the
same as the width of the variables in the text file. If the option to create delimited text files exists in the
program that generates the text file then it is recommended that you use the delimited text file format.

Ignore first line in text file. Often text files include, for ease of use, the variable names in the first line.
If such a line exists it must be ignored during import to EpiData. Variable names are defined in the
.QES file.

Date format. Specifies the order of day, month and year in dates.

Date separator character. Use this option to specify which character separates the day, month and
year in dates. Clear this option if no separator character is used in the text file.

Dates has prefixed zero. Set this option if dates in the text file is in this format (e.g.): 04052001 (May
4th, 2001). Clear this option if the format is (e.g.): 4052001 (also May 4th, 2001)

Years have 4 digits. Specifies if years in the dates of the text file are 4 digits (2001) or 2 digits (01). If
years have only 2 digits then the century will be set to 20 if the year is less than 50 and to 19 if the year
is greater than or equal to 50.

Import dBase files

Imports files in dBase III or dBase IV format to EpiData data files.

dBase files has variable names that can be 11 characters in length. Field names longer than 10
characters will be truncated since EpiData operates with 10 character field names.

The variable types of the dBase file will be imported as:

dBase variable type EpiData field type
C - Text Text field (normal case)

.

77

D - Date Date field in either European style (dd/mm/yyyy) or
American style (mm/dd/yyyy) depending on what
option is set

N/F - Numeric Variables with zero decimals and a width smaller than
five digits will be imported as integer fields. Other
numeric variables will be imported as floating point
fields.

L – Logical Boolean field

Only these variable types can be imported by EpiData.

Options for import are:

- import dates as <dd/mm/yyyy>, <mm/dd/yyyy> or <yyyy/mm/dd>

Import Stata files

EpiData can import Stata files versions 4, 5, 6, 7 and 8. A maximum of 800 variables can be imported.

Field names in Stata version 7 and 8 can be 32 characters in width. These field names will be
truncated to EpiData’s standard 10 character field names. Variable labels in Stata version 6, 7 and 8
can be 80 characters in width. These will be truncated to 50 characters.

The variable types of the Stata files will be imported as:

Stata variable type EpiData field type
Byte Integer field (3 digits)

Integer Floating point field (5 digits)

Long Floating point field (11 digits)

Double, float Floating point field. If format code is %fx.y

then x defines the width of the field and y
defines the number of decimals.
If format code is not %f then the field length
is set to 18 with 4 decimals.

String Text field (normal case)

If the format of a numeric variable is %d then the variable is imported as a date field. Standard is
<dd/mm/yyyy> but <mm/dd/yyyy> will be used if the format specifies that the month is shown before
the day.

If the Stata file contains value labels then these will be imported to a check file as COMMENT LEGAL.

If missing values in the form .a, .b or .c are found during import of a Stata 8 data file, the check file will
get a MISSING VALUE definition.

.

78

Other tools and functions
Make QES file from data file

If the .QES file that was used to create a data file is no longer available, it can be created by using
QES File from REC File found in the Tools menu.

Enter the name of the data file and a name of the new .QES file. Click OK.

QES File from REC File will ensure that field names stay the same as in the data file if the new .QES
file is used to make a new data file. If the data file was created with the option Automatic field naming
(as Epi Info) then curly brackets will be inserted if necessary. If the data file was created with the option
First word in question is field name then the field name will be inserted as the first word.

Recode data file

Recode data file is a tool that can be used to change the values of multiple fields in all records in a
data file in one batch run. The recode commands are part of a RECODEBLOCK..END block which
can be defined in the check file or in any other text file. The commands that can be used in the
RECODEBLOCK are: LET (with or without an explicit LET), IF..ELSE..THEN..ENDIF, CLEAR and
EXIT.

To run a set recoding commands select Recode Data from the Tools menu. Enter the name of the
data file to recode and the name of the file containing the RECODEBLOCK.

Recoding will be done for all records. A message will be given showing the number of records that will
be changed. The operation can be cancelled at this point leaving the data file unchanged. If the
operation is not cancelled then a backup of the original data file will be saved under the filename
FILENAME.OLD.REC and the file FILENAME.REC will contain the recoded records.

In the example below the function RecordNumber is used. This function returns the current record
number and can be used as a counter. In the example the field ID will get the value 3001 in record 1,
3002 in record 2, etc.

A summary of the recode operation will be added to the data entry notes files of the data file. Use
Document / Data Entry Notes and enter the name of the data file to view the data entry notes file.

Example of a RECODEBLOCK:

RECODEBLOCK

ID=RecordNumber+3000
IF V2 = . THEN

CLEAR V3
EXIT

ENDIF
V3=V3+1

END

Converting a two digit year to a four digit year.

This is simple since EpiData will read all dates as implicit four digit year. Numbers from 50 to 99 read
as 19xx and numbers from 00 to 49 as 20xx:

RECODEBLOCK

* to convert a 2 digit year to a four digit year:
fouryear = twoyear

END

.

79

Pack data file

During data entry a record can be marked for deletion using [Shift] + [Delete]. The record is not
removed from the data file but only marked for deletion.

To permanently delete all records marked for deletion use the function Pack File found in the Tools
menu.

Before the marked records are deleted permanently a warning is given showing how many records are
about to be deleted. If OK is pressed the records are deleted permanently. A backup of the original
data file is saved under the filename FILENAME.OLD.REC. If Cancel is pressed then the data file
remains unchanged.

Compress data file

Compress File changes the width of all fields in a data file so that the width is exactly the width of the
widest value. If an integer field is defined as ########## (10 digits) but the highest number in the data
file in this field is only 9999 then the field is redefined as ####.

The advantages of Compress Data file is that the data file can be reduced in size. Wasted space in all
fields is removed.

When the function is run a Backup of the original data file (before compression) is saved under the file
name FILENAME.OLD.REC.

Print data entry form

When a data entry form is shown it can be printed looking the same as it does on the screen, including
the current values of the fields. This may also be done when a data entry form is shown using the
Preview Data Form function.

Select Print Data form in the File menu when a data entry form is shown on screen.

.

80

Options

When all windows are closed or when an editor window is active, EpiData program options can be set
by selecting File / Options.

The options are placed on several tab-sheets. You can select another tab-sheet by using the mouse or
[Ctrl] + [TAB].

All settings are saved in the EpiData.ini file when EpiData is closed so selected options will be the
same the next time EpiData is started. Note that several different .INI files can be made on the same
computer, see The .INI file.

EDITOR OPTIONS

Change of font and background colour in editor windows. Note that all open editor windows are
updated with the new font and colour when Options are closed by using OK.

Change the number of spaces that are inserted when the [TAB] key is pressed. EpiData cannot work
with tab characters so tabs are automatically replaced with the number of space characters defined in
the Editor Options page when a file is opened or when text is pasted from another program.

SHOW DATA FORM OPTIONS

Defines how a data file is shown in a data form.

You can change the font and background colour of the data forms. You may also specify a different
colour for the background of the entry fields and choose to have a highlight in the active entry field.

Other options are how the entry fields look (3D-look, flat with border or flat without border), line height
in the data form and the number of pixels that the tabulator character (@) inserts.

CREATE DATA FILE OPTIONS

Defines how field names are made when Create Data file is run.

Define field names to be upper-case, lower-case or "as is in the QES file".

The naming style can also be selected. For details, please refer to the section Field names.

DOCUMENTATION OPTIONS

Defines how editor windows look when showing documentation (e.g. Document data file, List Data,
Codebook).

ADVANCED OPTIONS

ID-number: Defines the first number used in new files that contain an IDNUM field.

Error messages: If this option is set then messages due to errors in the handling of IF and LET
expressions in check files will be shown during data entry. This function can help in finding the reason
why an expression or condition does not work during the designing of a data entry system. If this option
is not set then errors in IF and LET expressions are ignored during data entry.

Language selects the language to use in menus, buttons, error messages etc. in EpiData. Please
refer to the language section.

Restore default options: Restores all options to default values (except language).

.

81

SOUNDS

It can be useful to make EpiData beep when an error occurs. This is indicated as part of the advanced
options setting. By tick marking ”Warnings” a standard beep will occur when an error or warning
happens provided the PC can give sounds. Some experimentation is needed. See further explanation
in CHECK file language description of the command BEEP.

FILE ASSOCIATIONS

Use this function to associate one or more of the EpiData file types with EpiData making it possible to
start EpiData with a double click on e.g. a data file (.REC file) in Explorer. The associated file types are
given an icon which makes it easier to identify the files as belonging to EpiData in Explorer.

Set the check mark next to the file types that are to be associated with EpiData and click the button
Associate file types.

To remove the association for one or more of the file types, set the check marks of the relevant file
types and click the button Remove association.

The .INI file

All settings of EpiData are saved in the file EPIDATA.INI which is located in the same directory as the
program file EPIDATA.EXE. It is not recommended that the .INI file is edited manually. However, it can
be useful if shipping a translated version of EpiData to add a file with the name EPIDATA.INI which
contains one line, for example:

Language=Francais

This line will make sure that EpiData starts with the specified language the first time EpiData is run
without the user having to go to Options to change the current language.

DO NOT include other lines in the shipped .INI file. The .INI file contains information on recently used
files, window sizes, etc. All this information is unique to one computer and may create strange results if
moved directly to another computer.

EpiData may be run with the program parameter /INI=inifilename. This parameter specifies that the
program settings are to be loaded from another .INI file than EPIDATA.INI and are to be saved to the
same file. This makes it possible to have several users on the same computer all saving their own
settings (window sizes, colours, etc.).

Toolbars

EpiData has two toolbars on the top of the program window - the work-process toolbar and the editor
toolbar. All functions shown in the toolbars can be reached by using the menus (File, Edit, etc.) and
one or both of the toolbars can be hidden.

Hide or show a toolbar by right-clicking with the mouse on the toolbar and select or deselect the
relevant toolbar. This can also be done by using Window / Toolbars.

On the same menu is found the function Hide Toolbars During Data entry. If this function is checked,
then both toolbars will be hidden during data entry and when adding or revising checks. This function is
checked by default.

.

82

Short-cut keys / mouse

WARNING - Do not use the MOUSE while entering data.
Controls built into the check file are NOT checked if you change field in the dataform by clicking with
the mouse. If you use the mouse to change field during dataentry you can produce invalid data. The
reason for this is:
1.. Testing of EpiData among many different users has shown that in practice it can be very difficult to
capture usage of the mouse in a reliable way. Many processes are going on at the same time on a
windows PC, e.g. EpiData, E-mail and antivirus program.
2.. Sometimes the user wishes to exit a field in which restrictions were made. If these are very tight it
might be that the user gets into an endless loop. E.g. by having “mustenter” in a field, and it turns out
that the value was not possible for some persons. (Structural missing value). This is the only situation
for which usage of the mouse is good practice during data entry.

Short-cut keys
To minimise ergonomic strain the use of short-cut keys is suggested in general. Almost all actions can
be done by use of the keyboard. If an underscore is seen in a menu or on a form, then access that part
by pressing the Alt key plus the underscored letter, e.g. file menu would be Alt+f.

Editor

[Ctrl] + [N] New editor window
[Ctrl] + [O] Open existing .QES file
[Ctrl] + [S] Save .QES file (without closing window)
[Ctrl] + [P] Print contents of editor window
[Ctrl] + [A] Select all text
[Ctrl] + [C] Copy selected text to clipboard
[Ctrl] + [X] Cut selected text to clipboard
[Ctrl] + [V] Insert text from clipboard
[Ctrl] + [Z] Undo last change
[Ctrl] + [G] Goto line (prompts for line number)
[Ctrl] + [F] Find text
[Ctrl] + [R] Find and replace text
[Ctrl] + [Q] Show field pick list / give the focus to field pick list
[Ctrl] + [T] Preview data form
F10 Close current file. Works in all parts of EpiData.

Add/Revise Checks

When the focus is in a
field in the data form:

[Ctrl] + [Home] Select first field
[Ctrl] + [End] Select last field
[F4] Find data entry field
[F6] Goto check functions window
[Ctrl] + [Right arrow] Goto check functions window
[Ctrl] + [L] Edit Range/Legal
[Ctrl] + [J] Edit Jumps
[Ctrl] + [E] Toggle Must Enter between Yes and No
[Ctrl] + [R] Toggle Repeat between Yes and No
[Ctrl] + [A] Edit value labels
[Ctrl] + [D] Edit all checks for current field
[Ctrl] + [C] Copy all checks in the current field to the clipboard
[Ctrl] + [X] Cut all checks in the current field to the clipboard
[Ctrl] + [V] Insert checks from clipboard
[Alt] + [S] Save check file
[Alt] + [D] or [F9] Edit all checks of current field
[Alt] + [X] Exit Add/Revise Checks
numeric [+] key Go into value label definition editor for current variable

.

83

When the focus is in
the check-edit window:

[F6] Goto data form window
[Ctrl] + [Left arrow] Goto data form window
[Enter] Goto next check
[Up arrow] Goto previous check
[Down arrow] Goto next check
[Ctrl] + [Up arrow] Make previous field the current field
[Ctrl] + [Down arrow] Make next field the current field
[Alt] + [S] Save check file
[Alt] + [D] Edit all checks of current field
[Alt] + [x] Exit Add/Revise Checks

Enter data

[Ctrl] + [N] New record
[Shift] + [Delete] Mark record as deleted / Undelete record (toggle)
[Ctrl] + [PgUp] or [F7] Show previous record
[Ctrl] + [PgDn] or [F8] Show next record
[Ctrl] + [P] Print Data form
[Ctrl] + [Alt] + [Home] Show first record
[Ctrl] + [Alt] + [End] Show last record
[Ctrl] + [Home] Goto first field in current record
[Ctrl] + [End] Goto last field in current record
[Ctrl] + [G] Goto to a specified record number
[Ctrl] + [F] Find record based on contents of the current field
[F3] Search again using the same search conditions as specified using [Ctrl] + [F]
[F4] Find data entry field
[Shift]+[F4] or [F4]-[F4] Find relate field
[Ctrl] + [Left arrow] Scrolls the data form to left margin
[F9] or numeric [+] key Opens list of legal values (if available)
[F5] Opens data entry notes (see check file description of Type Statusbar)
[F10] (or [Ctrl] + [R]) Only during RELATE: moves back one level to the data file that called RELATE
[F10] Closes datafile.

.

84

Program parameters

EpiData can be run using one or more of the following parameters. The parameters can be specified in
a .BAT file or by using a Windows shortcut.

filename.QES Opens the specified QES file at start-up of program

filename.REC Opens the specified data file at start-up of program

/NOTOOLBARS Hides both tool-bars

/AUTOSAVE Suppresses the Save record to disk? message and causes modified records to

be saved without asking. /AUTO has the same effect and is kept for compatibility
with Epi Info v6.xx. AUTOSAVE is also a check file command.

/CONFIRM Suppresses the function that changes focus to next entry field when a entry field is
filled. CONFIRM is also a check file command.

/INI=inifilename Uses the program settings found in the specified .INI file instead of using the
default EpiData.INI. See also The .INI file.

If more than one file name is used as parameter then only the last file will be opened.

An example:

A batch-file (.BAT file) named CHILDPRJ.BAT is created containing this command line:

EPIDATA.EXE CHILDPRJ.REC /NOTOOLBARS

When the batch file is run then EpiData will execute opening the data file CHILDPRJ.REC and hiding
both toolbars.

.

85

Internationalisation

EpiData uses English as it's ’native language’, but other languages may be supplied making it possible
to make local versions of EpiData with menus, buttons, error messages, etc. in the local language.

The language used by EpiData is changed by selecting Options / Advanced from the File menu from
the main screen.

Languages other than English require a language file to be present in the same directory as
EPIDATA.EXE. The language files are named LANGUAGE.LANG.TXT. For example, the Spanish
language file will be ESPANOL.LANG.TXT.

Language files will be made available from www.EpiData.dk as they become available. If a language
file does not currently exist for your language and you are considering undertaking the translation
yourself, then please contact Info@EpiData.dk for further information.

When the Options / Advanced page is shown, the language dropdown box shows the names of all
XXX.LANG.TXT files present in the EpiData program directory. Adding a new language is therefore
done by downloading a language file from www.EpiData.dk and saving it in the same directory as
EPIDATA.EXE.

EpiData has three different information and help files. The standard (English) files are:

EPIDATA.HLP (the help file)
EPITOUR.HLP (Epitour)
README.RTF (information shown when EpiData is run the first time)

These files can also exist in local language versions. In the LANGUAGE.LANG.TXT file a language
code is specified, e.g. FR for France. This language code is used to find local versions of the three
help files by adding "_XX" to the standard filename, where XX is the language code. For example, the
French files would be named:
EPIDATA_FR.HLP
EPITOUR_FR.HLP
README_FR.RTF

If no local version of the three files are found then the standard (English) files are used.

Field types in EpiData

Field type

Example

ID number

<IDNUM>

Numeric

###.##

Text

___ _________
<E >

Upper-case text

<A>, <A >

Boolean

<Y>

Date <dd/mm/yyyy>
<mm/dd/yyyy>
<yyyy/mm/dd>

Today's date <today-dmy>
<today-mdy>
<today-ymd>

Soundex

<S> <S >

Tabulator code @

.

86

ID Number

<IDNUM>
<IDNUM >

IDNUM is an automatic ID number field that is incremented by one for every new record entered. The
ID number cannot be changed during data entry since it is generated automatically.

The default first value of the ID number in a new data file is 1, but this can be changed in File /
Options / Advanced.

Numeric fields

###.###
########
##.####

Numeric fields accept entry of numbers, the minus sign and decimal points. Periods (.) as well as
commas (,) are accepted as decimal points in both the .QES file and during data entry. Only one
decimal point is accepted in a field. This means that commas cannot be used as thousand separators.

The number of characters (including a decimal point) define the length of the field. Maximum field
length is 14 characters.

Text fields and encrypted fields

_

The number of underscore characters defines the length of the field. Text fields accept all characters.
The maximum field length is 80 characters.

<E >

Encrypted fields are a special kind of text fields. The contents of encrypted fields are shown in
readable form on the screen, but saved on disk with encryption. The algorithm used is “strong
encryption” called Rijndael AES, see http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ and
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/.

There is no way to brake the encryption or guess the password based on contents of the file, so do not
forget the password or the information in that field is lost.

Use encrypted fields to store data in a protected mode, e.g. personal information.

When a datafile is created and the qes-file contains one or more encrypted fields EpiData will prompt
for a password which is saved in the datafile. A datafile containing encrypted fields can only be opened
if the proper password is entered.

In the checkfile, a encrypted field can be treated as a text field, e.g. LET encrypt1="Howdy".

Upper-case text fields

.

87

<A>
<A >

Upper-case text fields accept all characters, but entries are converted to upper case. The length of the
field is defined by the number of characters between the ‘less-than’ (<) and the ‘greater-than’ (>)
symbols, including the upper case ‘A’. In the examples given above, the first field is 1 character in
length. The second field is 5 characters in length.

Boolean fields (yes/no fields)

<Y>

Boolean fields accept only Y, N, 1, 0 and space as legal entries. An entry of "1" is converted to "Y". An
entry of "0" is converted to "N".

Boolean fields have a length of one. This means that a field code of <Y > in the .QES file will create an
error.

Date fields

<dd/mm/yyyy>
<mm/dd/yyyy>
<yyyy/mm/dd>

There are three types of date fields: European style dates (day/month/year), American style dates
(month/day/year) and "reversed dates" (year/month/day).

Date fields are always 10 characters in length.

During data entry, legal characters are numbers and forward slash (/). Dates can be entered without
using the slash character if all numbers are written in full. The date 4th of May 1999 can be entered as
04051999 if the field is of the European type date. When the focus is changed to the next field, the
date field will be formatted to the standard format (04/05/1999).

It is not necessary to type all 10 digits. If the entry is 040599 in a European date field, the field will be
formatted to 04/05/1999. 2-digit years are interpreted as the belonging to the century 1900 for years
between 50 and 99 and the century 2000 for years between 00 and 49.

If the entry is 0405 in a European date field, then the current year is added to the field.

After entry, all types of date fields will be checked to make sure a legal date was entered.

EpiData only supports dates with 4 digit years.

Today’s date fields

<today-dmy>
<today-mdy>
<today-ymd>

Today's date fields will be filled automatically with the current date (i.e. the computer's system date).
This type of field cannot be edited and cannot receive the focus.

If a previously saved record containing a today's date field is edited and if the modified record is saved
then today's date field will be updated to the current date. This feature makes it possible to use a
today's date field as a last changed date marker.

NOTE: The today's date fields using European date format (dmy) and reversed format (ymd) are
introduced in EpiData. These field-types are not compatible with EpiInfo.

Soundex fields

.

88

<S >
<S >

Soundex fields accept all characters, but only the letters in the last word of the entry will be used to
create the Soundex code.

Soundex is a coding of words that can be used to anonymise e.g. the surnames of informants
participating in a survey. A Soundex code is always in the format A-999, i.e. one upper-case letter, a
hyphen and 3 numbers.

The Soundex code is generated using the following rules:

1. The first letter of the word is always retained. The rest of the surname is compressed to a three digit
code based on the following coding scheme:

A E I O U Y H W Not coded
B F P V Coded as 1
C G J K Q S X Z Coded as 2
D T Coded as 3
L Coded as 4
M N Coded as 5
R Coded as 6

2. Consonants after the initial letter are coded in the order they occur:
 HOLMES = H-452
 ADOMOMI = A-355

3. The code always uses the initial letter plus three digits. Further consonants in long words are
ignored:
 VONDERLEHR = V-536

4. Zeros are used to pad out shorter names:
 BALL = B-400
 SHAW = S-000

5. Double consonants are treated as one:
 BALL = B-400

6. As are adjacent consonants from the same code group:
 JACKSON = J-250

7. A consonant immediately following an initial letter from the same code group is ignored:
 SCANLON = S-545

8. Apostrophes and hyphens are ignored:
 KING-SMITH = KINGSMITH = K-525

9. Consonants from the same code group separated by W or H are treated as one:
 BOOTH-DAVIS = B-312

.

89

Tabulator code
@

When a data entry form is created the fields in the .QES file will be put onto the form in a position
determined be the question text in front of the field. This can cause an uneven alignment of the fields.
If a justification of the fields are required, the tabulator code can be used in the .QES file. Please note
that this code does not exist in Epi Info, where it will be treated as any other character.

The tabulator codes do not affect the fields or the data file (.REC file) in any other way than changing
the position of the fields in the form.

Insert the @ symbol immediately before a field to align it with the next tab stop.

An example:

v1@####
v20@####

These .QES file lines will create two 4-digit integer fields. The "questions" ("v1" and "v2") will be put on
the left margin of the form. The left edge of the two fields will be put on the position from the left
margin.

Tab stops are measured in screen-pixels. The default is one tab stop for every 40 screen pixels, but
this value can be changed in File / Options / Show data form.

.

90

Appendices

Contributions and further acknowledgement

A complete list of donors is maintained at http://www.epidata.dk/funding.htm. Please acknowledge the
institutions and funding bodies supporting the development.

By aug. 2002 the following were among donors:
WHO-TDR office Geneva, London School of Hygiene & Tropical Medicine, UK , Health Canada,
IUTLD-Paris, Valid International, UK, International Centre for Eye Health, UK , County of Funen,
Denmark, Mark Myatt, Brixton Health, UK, Danish Data Archives/ERAS, Denmark, University of
Southern Denmark, Faculty of Health – Odense., University of Aarhus, Denmark Faculty of Health
Sciences

Acknowledgements

The ideas and principles used in EpiData are based on:

Dean AG, Dean JA, Coulombier D, Brendel KA, Smith DC, Burton AH, Dicker RC, Sullivan K, Fagan
RF, Arner TG, Epi Info, Version 6: A Word-Processing, Database, and Statistics Program for Public
Health on IBM-compatible Microcomputers, Centers for Disease Control and Prevention, Atlanta,
Georgia, U.S.A., 1995.

Centres for Disease Control (CDC) kindly provided the source code for Epi Info to us. Parts of EpiData
are based on this source code. Neither the World Health Organisation (WHO) or CDC has any
responsibilities for the development and support of EpiData.

Functions that allow EpiData to export data in Microsoft Excel format is based upon a freeware Delphi
Unit written by Eddy Sterckx.

Parsing and interpretation of calculations, IF … THEN conditions and expressions are based on a
freeware Delphi Unit written by Martin Lafferty. This unit has been modified to for use with EpiData.

.

91

EpiData house example. – extended explanation

House – person – visit example is found at Http://www.epidata.dk/downloads/examples.htm

First you open the house.rec file and the screen shows this (only fields are shown):

The bottom of the status line in
EpiData it will show this:

and if you click on visit.rec the
screen of visit.rec and:

but note also the

Indicating that when you shift

levels by clicking with the mouse, then you are in ”read only” mode at the sublevels. To change to edit
mode at sublevels you must be in the field which has the defined relation. E.g. here when you have
entered the data in the field running, EpiData shifts to person level due to these check commands in
the field water:

WATER
 AFTER ENTRY
 RELATE HOUSEID PERSON
 END
END

The opening screen of the house level indicates street name and town of the house:

.

92

The highlighted tab is now person.rec and note the filter message of houseid= 1.

Now you can change data for the person ”Peter Hansen” or you could create a new person, by
pressing Ctrl+N . Note that address and city is only shown in the yellow fields – it is not edited due to
commands in the checkfile.

To add visits for this person enter something in field ILL which will take you to visits:

Note two things here: An information box shows the name of the person and the name, age, sex and
value of person variable Ill is shown in blue.

The welcome box was made like this:
BEFORE FILE
* Message "Now please enter all known visits for \n \n @varNAME"
 Help "Now please enter all known visits for \n \n @varNAME"
 DEFINE varINIT _
 define info ___
END

.

93

The actual values from previous record entered like this:
Before record
 let info = varNAME + " Age: " + varAGE + " Sex: " + varSEX + " Ill: " + varILL
end

Where the varName varAge etc are temporay variables defined in person.chk, check contents for
syntax.

Now we need the commands to have the info variable shown:

VISIT
 BEFORE ENTRY
 type "@info"
 END
END

By the ”type @info ” you get the blue text shown in previous figure.

Once you have entered a visit the EpiData will ask if you wish to save the record:

And after you say yes and empty record will be shown. If you are done with ”Peter Hansens” records
press Ctrl+R or F10 etc and you are taken to the previous level.

In summary:
A given relate is ONLY performed when you are in the field for which the relate is defined. If you click
on other levels a ”read only” status will result. This is the same behaviour as Epi Info v6. In future
versions of EpiData we might change this dependent on users comments to the discussion forum and
or e-mail to info@epidata.dk .

.

94

Datafile structure

EpiData

EpiData datafiles have the fileextension .REC. The datafile structure is the same as Epi Info version 6,
except for a few changes described below.

EpiData will read native Epi Info datafiles if they do not contain the field type phonenumber or local
extension phonenumber.

Epi Info will read native EpiData datafiles if the do not contain the field type soundex or EuroToday.

EpiData does not add a End-Of-File marker to the datafile, but will know how to handle the EOF
marked added by Epi Info.

The datafile consists of a header describing the fields (variables) contained in the datafile plus the
data.

The header consists of one line describing the number of fields (variables) in the datafile plus a code
signifying the background colour of the entry form and one line for every field (variable).

Please note that a field with the length 0 (null) is a label (e.g. a heading) and should be ignored if
converting the EpiData datafile to other programs. In order across each line of the header are the
following data items describing each field. The text was taken from the Epi Info v6 manual text. Color
codes and character displayed are not used in EpiData. All lines start from line 1 in the EpiData
Dataform. Upon creation of the dataform line descriptions are converted into pixels based on the
settings of line height and fonts in options.

1. The character to be displayed in the entry field. Number signs are used for text lines even

though they are not displayed.
2. The field name, up to 10 without punctuation or spaces. The name must begin with an

alpha character, but may contain digits.
3. The column in which the text preceding the entry field begins. If the line is only text, it is

displayed in this column. The first column on the left of the screen is column 1.
4. The line from the top of the screen where the text and/or field is displayed. The top line of

the questionnaire is line 1.
5. The color of the text. The color numbers are illustrated on the Epi Menu Setup screen.
6. The column where the data-entry field begins.
7. The line where the data-entry field begins.
8. A code number for the field type. Note that code numbers for numeric fields also give the

number of digits.
9. The number of characters in the field, or field width. This is 0 if the field contains only

text without one of the designated Epi Info field types.
10. The color of the entry field itself.
11. The text that will be displayed on the screen at the location specified in the third and

fourth items above. This may be up to 80 characters wide.

As in Epi Info datafiles the 6th number in the field-description line which is the eight column above is
the field type code. The codes are interpreted as follows:

Value Field type Field length Comments
0 Integer 1-14 chars. Integer number fields. Contains only numbers 0-9 or

spaces. The field can be up to 14 characters in length,
but EpiData saves integer fields with a length of 5 or
more to Double Real Fieldtype with the field type code
100 (see Double Real field type)

1 Alpha 1-80 chars. Text fields. Can contain all ANSI characters.
2 Date 5, 8 or 10 chars. US style data fields, i.e. dates in the form mm/dd,

.

95

mm/dd/yy or mm/dd/yyyy. What form is used is read
from the length of the field.
Datafiles created with EpiData will always use 4-digit
years, i.e. a length of 10, but to ensure compatibility
with Epi Info short datetypes are allowed.

3 UpperAlpha 1-80 chars. Upper-case text fields. Can contain all uppercase
ANSI characters.

4 - - Not used in EpiData. The number is reserved to
ensure compatibility with Epi Info. However, as far as I
know the number is unused in Epi Info, too. The
source code of Epi Info labels field type code 4 as
“CheckBox”.

5 Boolean 1 character Boolean field or yes/no field. Can contain space (ANSI
#32), the letter “Y” or the letter “N”.

6 Double Real 1-14 chars. Double Real number field. If the field type code is 6 or
100 then the number of decimals is null.
A double real number field with one or more digits
after the decimal separator will have the code 100+the
number of decimals.
Decimal separator will always be a dot (“.”) even if
EpiData allows users to enter real numbers using a
comma a decimal separator.
An example: A field entered in EpiData as ###.## will
signify a double real number field with the length of 6
and the field type code will be 100+2=102.

7 - - Not supported by EpiData. Used for phone-number
fields in Epi Info.

8 - - Not supported by EpiData. Was ment to be used for
time fields in Epi Info.

9 - - Not supported by EpiData. Used for local extension
phonenumber in Epi Info.

10 Today 5,8 or 10 Today’s day field in US date style. Data cannot be
entered in this field by the user but will contain the
current date of the time the record containing the field
was saved. Use same format as Date fields (see field
code 2)

11 EuroDate 5,8 or 10 European style date field, i.e. dd/mm, dd/mm/yy or
dd/mm/yyyy. Which date type is used is read from the
length of the field. EpiData only creates date fields with
4-digit years (i.e. a field length of 10), but shorted date
types are kept for compatibility with Epi Info.

12 IDNUM 5-14 chars. Automatic ID-number field. Field will be filled out by
EpiData with an incrementing integer number.
Contains only numbers 0-9.

13 - - Not supported by EpiData. Field type code is reserved
by Epi Info.

14 - - Not supported by EpiData. Field type code is reserved
by Epi Info.

15 - - Not supported by EpiData. Field type code is reserved
by EpiData.

16 EuroToday 5,8 or 10 European style today’s date field. Data cannot be
entered in this field by the user but will contain the
current date of the time the record containing the field
was saved. Use same format as EuroDate fields (see
field code 11).
Field type is not supported by Epi Info.

17 Soundex 5-80 characters Soundex code field in the format A-000 where A can
be any uppercase letter and 000 can be any three
numbers. When converting EpiData datafiles to other
programs this field type can be converted to a text field
with a length of 5.
Field type is not supported by Epi Info.

.

96

A few more remarks:

• A missing value is saved as a number of spaces (ANSI #32) corresponding to the length of the

field.
• Epi Info creates field names using only upper-case letters. When datafiles are created in EpiData

the user can optionally create lower-case, upper-case or mixed-case field names. The lettercase of
fieldnames created in EpiData should therefore be kept if possible when converting to other
datafile-formats.

• The length of the header of an Epi Info v6 file should not exceed 500. However it is not consistent
across the Epi Info v6 modules whether the header length can indicate a position up to 999. Since 4
places are left for indication of which line in the qes file that ”line” in the rec file refers to: EpiData
allows up to 999 lines in the QES file.

Datafile label and variable-labels

The datafile label is stored in the first line of the datafile following the identifier “Filelabel: “ (see
example of datafile attached to this document).

The datafile will also contain a flag showing if variable-labels are used because this will influence the
way EpiData will interpretate the “questions” save in connection with every field (variable). If the
variable-label flag is set then the first word in a field’s question will be interpreted as a copy of the
fieldname and the rest of the question will be interpreted as the variable-label.

The variable-label flag is set if the string “VLAB” (lettercase not important) is found in line one of the
datafile before the identifier “Filelabel: “ or if the string “VLAB” is found in line one of the datafile without
the identifier “Filelabel: “ being present in line one.

Example of datafile created by EpiData.

The file consists of 22 fields (variables), none of which are labels-only, and 3 records. The 2nd record
is marked "Deleted" (it is terminated by a question-mark).

The datafile uses variable-labels. The question for the first field is, according to the datafile, "Int1 The
first integer". But because of the VLAB flag, the fieldname "Int1" is removed and the variable-label is
therefore "The first integer". The datafile has the label “This is the filelabel”.

22 1 VLAB Filelabel: This is the filelabel
#INT1..........1...1..30...7...1...0...1.112.Int1.The first integer
#INT4..........1...2..30...7...2...0...4.112.Int4.A 4-digit integer
#INT6..........1...3..30...7...3.100...6.112.Int6.A 6-digit integer
#INT9..........1...4..30...7...4.100...9.112.Int9.A 9-digit integer
#INT13.........1...5..30...7...5.100..13.112.Int13.A 13-digit integer
#FIX11.........1...7..30..10...7.101...3.112.Fix1:1...
#FIX53.........1...8..30..10...8.103...6.112.Fix5:3...
#FIX104........1...9..30..10...9.104..10.112.Fix10:4..
_TXT1..........1..11..30...7..11...1...1.112.Txt1..
_TXT4..........1..12..30...7..12...1...4.112.Txt4..
_TXT9..........1..13..30...7..13...1...9.112.Txt9..
_TXT14.........1..14..30...7..14...1..14.112.Txt14.
_UPP1..........1..16..30...7..16...3...1.112.Upp1..
_UPP4..........1..17..30...7..17...3...4.112.Upp4..
_UPP9..........1..18..30...7..18...3...9.112.Upp9..
_UPP14.........1..19..30...7..19...3..14.112.Upp14.
_BOOL..........1..21..30...7..21...5...1.112.Bool..
_SOUNDEX2......1..22..30..11..22..17..20.112.Soundex20.
_EUDATE........1..24..30..10..24..11..10.112.EU.date..
_USDATE........1..25..30..10..25...2..10.112.US.date..
_EUTODAY.......1..26..30..10..26..16..10.112.EU.today.
_USTODAY.......1..27..30..10..27..10..10.112.US.today.
1111111111111111111111111111111111.111.11111111.1111aaaaaaaaaaaaaaaaaaaaaaaaaa!
aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAYF-623 01/05/200005/01/200025/05/2!
00005/25/2000!
2222222222222222222222222222222222.222.22222222.2222bbbbbbbbbbbbbbbbbbbbbbbbbb!
bbBBBBBBBBBBBBBBBBBBBBBBBBBBBBYA-535 02/05/200005/02/200025/05/2!
00005/25/2000?

.

97

EpiData International Versions
Principles of translation and local adaptation.

With the development of EpiData we encourage users in other countries and areas using other
languages to translate documentation and other supplementary parts of EpiData. We cannot do the
translation but will assist by supplying certain modules for use in the translation process.

We hope for an open minded "culture" surrounding EpiData, but a few restrictions must apply to
ensure similarity and guard against misunderstandings. Therefore we have decided on the following
principles:

1. Epidata.exe as such is NOT changed. Only one version exists. That version can be distributed

from as many local servers around the world as needed. For those putting EpiData on an internet
server or other media we would like an e-mail telling:
a. Once a year the number of downloaded copies if possible. And if possible from which

countries these were downloaded.
b. The internet address of the server
c. The e-mail adress of the person to notify when we update EpiData

2. Menu titles, documentation and help files can be changed to other languages.
The local version can consist of the following (from a...f)
a. Menu titles file (e.g. French.Lang.Txt or Dutch.Lang.Txt)
b. Readme.rtf (e.g. ReadMe_Fr.rtf)
c. EpdIntro file translated to pdf file
d. Help file translated to pdf file
e. EpiData Help file as windows help file (including epidata.cnt - e.g. EpiData_fr.hlp)
f. Translated examples files, see "samples" folder in the supplied zip file.
g. EpiTour guide translated to pdf file
h. EpiTour help file as windows help file (including epitour.cnt) (e.g. EpiTour_fr.hlp)

3. Levels of translation can be:
Only introduction documentation and menu's : a + b + c.
Full package will be: a-d packed as a supplementary zip file for extraction.
Complete package will be: (a+b+c+e +f + epidata.exe) as a setup.exe file for installation

4. Once translated the language packs will be available from (http://www.epidata.dk) including all
translated files. A facility is included in EpiData (from version 1.5) to choose which language to
use: See Option - Advanced - Language.

5. We encourage users to write introduction papers or notes on how to use EpiData as part of
courses or otherwise. Those who write such material has the copyright for those parts.

6. We will try to arrange a coordination seminar in Europe for the translation. Provided we can find
someone to host the meeting and funding is available.

.

98

Who can translate EpiData texts.

We have asked on the internet lists for persons and institutions willing to do the work. As soon as
someone wishes to do the job they can start. If national institutions exist for Epi Info distribution in that
country we will contact them and ask if they are willing to coordinate the task.

Those wishing to develop national versions should aggree to the following principles:
1. The Epidata logo, the epidata homepage (http://www.epidata.dk) and any local homepage should

be mentioned on the front page of all material relating to EpiData.
2. The "about" box when running EpiData will include a one line statement describing who made the

local version. E.g. French version could be:
Version d'EpiData en français (Http://www.epiconcept.fr) de ... M xxxxx.

3. The About box and the acknowledgement part of the help file will be formulated by the EpiData
team and will include information on those who developed the international versions.

4. The local versions must be given to users as freeware and made available from an internet
site at no cost. For distribution via other media than internet only cost of materials, printing and
postage can be charged. For distribution of printed material costs of printing can be included.

5. Direct translation of material developed as part of EpiData should have unchanged frontpage
format, see examples of the Epitour document attached. Authors remain as the original Lauritsen
JM, Bruus M, Myatt M. with "Translated by and etc" added.
These translations must be provided as free pdf files on the internet site. The EpiData office can
transform the documents to PDF format if needed.

6. If someone writes independent documents or notes (not translation of the EpiData supplied
documents) on usage of EpiData we suggest putting the logo on the frontpage and reference to
the relevant www pages and the suggested reference for epidata in the foreword or prepage of that
material.

7. A copy of the local version or the relevant link to a local server must be given to info@epidata.dk.
The information will be made available from http://www.epidata.dk

8. If no local site is available the international versions can be distributed from http://www.epidata.dk
9. The responsibility of correctness of formulation and suggestions of the local language versions

remains with the authors of the local versions.

How to get started with translation:

Check out on the http://www.epidata.dk if a translation has already been made. If so contact the site or
person responsible for that language and offer your assistance in further translation.

If a translation has not been made send an e-mail to info@epidata.dk and tell who you are and to
which language you wish to translate EpiData into. Further instructions and material will be sent to
you.

	About EpiData v3.1
	EpiData is free.

	N
	New features in v3.1

	Introduction
	Overview – short tour of EpiData.
	1. Define Data
	2. Make datafile.
	3. Add/Revise Checks - at Entry of Data
	4. Enter Data
	5. Document Data
	6. Export for analysis and securing data.

	How to analyse data after entry
	History of EpiData:
	The EpiData Association
	Thanks for the support and testing
	Contributions and funding
	Support
	EpiData mail news

	Features in EpiData
	Compatibility with Epi Info
	Editor
	Auto indention
	Aligning entry fields
	The Field Pick List
	Code Writer
	Preview Data Form

	Field names
	First word as field name
	Automatic field names
	Variable labels

	Create data file
	Revise Data File
	Rename fields
	Check file
	Add / Revise Checks
	Range / Legal
	Ignoremissing
	Jumps
	Must Enter
	Repeat
	Value labels
	Edit all checks for current field
	Copying checks
	Clear Checks
	Check file structure
	Example of a check file
	User defined check functions

	List of check commands
	Operators and functions

	Enter Data
	Navigation between fields
	Navigation between records
	Navigation between related files
	Finding records
	Finding fields and relatefields
	Filter

	Append / Merge Data files
	Append
	Merge Data files

	Document data file
	Data entry notes
	Data file label
	List data
	Codebook – basic tabulation
	Logical Consistency Check
	Double entry and validation
	Count records by field

	Export data
	Backup of data
	Export to text file
	Export to dBase III format
	Export to Excel
	Export to SPSS
	Export to SAS
	Export to Stata
	Export to new EpiData data file

	Import data
	Import of text filesImport of dBase filesImport of Stata files
	Import text files
	Import dBase files
	Import Stata files

	Other tools and functions
	Make QES file from data file
	Recode data file
	Converting a two digit year to a four digit year.
	Pack data file
	Compress data file
	Print data entry form

	Options
	The .INI file
	Toolbars
	Short-cut keys / mouse
	Program parameters
	Internationalisation

	Field types in EpiData
	ID Number
	Numeric fields
	Text fields and encrypted fields
	Upper-case text fields
	Boolean fields (yes/no fields)
	Date fields
	Today’s date fields
	Soundex fields
	Tabulator code

	Appendices
	Contributions and further acknowledgement
	Acknowledgements
	EpiData house example. – extended explanation
	Datafile structure
	EpiData International Versions
	Principles of translation and local adaptation.
	Who can translate EpiData texts.

